{"title":"利用偏振敏感介电元表面生成双涡旋光束的数值推导","authors":"Heonyeong Jeong, Younghwan Yang, Junsuk Rho","doi":"10.1002/andp.202400153","DOIUrl":null,"url":null,"abstract":"Metasurfaces, composed of arranged nanoscale particles, manipulate electromagnetic waves for tailored physical properties. Recently vortex beams, carrying orbital angular momentum, have been generated through metasurfaces to realize diverse applications. Here, the study introduces a metasurface capable of generating dual‐mode vortex beams, which combines the functionalities of chiral metalenses and vortex beam generation. These dual‐mode vortex beams exhibit varying characteristics depending on the polarization state of the incident light, offering improved control over orbital angular momentum. This advancement holds promise for enhancing applications such as optical communication, optical tweezers, and imaging for overcoming diffraction limit. By employing titanium dioxide (TiO<jats:sub>2</jats:sub>) for its efficiency, the design concept is validated through simulations and discuss considerations for fabrication. The proposed approach paves the way for compact optical systems with heightened adaptability.","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"54 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Derivation of Dual Vortex Beam Generation using Polarization‐Sensitive Dielectric Metasurfaces\",\"authors\":\"Heonyeong Jeong, Younghwan Yang, Junsuk Rho\",\"doi\":\"10.1002/andp.202400153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metasurfaces, composed of arranged nanoscale particles, manipulate electromagnetic waves for tailored physical properties. Recently vortex beams, carrying orbital angular momentum, have been generated through metasurfaces to realize diverse applications. Here, the study introduces a metasurface capable of generating dual‐mode vortex beams, which combines the functionalities of chiral metalenses and vortex beam generation. These dual‐mode vortex beams exhibit varying characteristics depending on the polarization state of the incident light, offering improved control over orbital angular momentum. This advancement holds promise for enhancing applications such as optical communication, optical tweezers, and imaging for overcoming diffraction limit. By employing titanium dioxide (TiO<jats:sub>2</jats:sub>) for its efficiency, the design concept is validated through simulations and discuss considerations for fabrication. The proposed approach paves the way for compact optical systems with heightened adaptability.\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/andp.202400153\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/andp.202400153","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical Derivation of Dual Vortex Beam Generation using Polarization‐Sensitive Dielectric Metasurfaces
Metasurfaces, composed of arranged nanoscale particles, manipulate electromagnetic waves for tailored physical properties. Recently vortex beams, carrying orbital angular momentum, have been generated through metasurfaces to realize diverse applications. Here, the study introduces a metasurface capable of generating dual‐mode vortex beams, which combines the functionalities of chiral metalenses and vortex beam generation. These dual‐mode vortex beams exhibit varying characteristics depending on the polarization state of the incident light, offering improved control over orbital angular momentum. This advancement holds promise for enhancing applications such as optical communication, optical tweezers, and imaging for overcoming diffraction limit. By employing titanium dioxide (TiO2) for its efficiency, the design concept is validated through simulations and discuss considerations for fabrication. The proposed approach paves the way for compact optical systems with heightened adaptability.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.