全局麦克斯韦附近 Vlasov-Riesz-Fokker-Planck 系统的全局考奇问题

IF 1.1 3区 数学 Q1 MATHEMATICS
Young-Pil Choi, In-Jee Jeong, Kyungkeun Kang
{"title":"全局麦克斯韦附近 Vlasov-Riesz-Fokker-Planck 系统的全局考奇问题","authors":"Young-Pil Choi, In-Jee Jeong, Kyungkeun Kang","doi":"10.1007/s00028-024-00995-2","DOIUrl":null,"url":null,"abstract":"<p>We prove the global existence and uniqueness of solutions to the Vlasov–Riesz–Fokker–Planck system around the global Maxwellian in the periodic spatial domain. Depending on the order of Riesz potential, we present two frameworks for the construction of global-in-time solutions with Sobolev and analytic regularity. The analytic function framework covers the Vlasov–Dirac–Benney–Fokker–Planck system. Furthermore, we show the exponential decay of solutions toward the global Maxwellian. Our result is generalized to the whole space case in which the decay rate of convergence is algebraic.\n</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Cauchy problem for the Vlasov–Riesz–Fokker–Planck system near the global Maxwellian\",\"authors\":\"Young-Pil Choi, In-Jee Jeong, Kyungkeun Kang\",\"doi\":\"10.1007/s00028-024-00995-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the global existence and uniqueness of solutions to the Vlasov–Riesz–Fokker–Planck system around the global Maxwellian in the periodic spatial domain. Depending on the order of Riesz potential, we present two frameworks for the construction of global-in-time solutions with Sobolev and analytic regularity. The analytic function framework covers the Vlasov–Dirac–Benney–Fokker–Planck system. Furthermore, we show the exponential decay of solutions toward the global Maxwellian. Our result is generalized to the whole space case in which the decay rate of convergence is algebraic.\\n</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00995-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00995-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了弗拉索夫-里兹-福克-普朗克(Vlasov-Riesz-Fokker-Planck)系统在周期性空间域中围绕全局麦克斯韦的解的全局存在性和唯一性。根据 Riesz 势的阶数,我们提出了构建具有 Sobolev 正则性和解析正则性的全局时间解的两个框架。解析函数框架涵盖 Vlasov-Dirac-Benney-Fokker-Planck 系统。此外,我们还展示了解向全局麦克斯韦值的指数衰减。我们的结果被推广到整个空间的情况,在这种情况下,收敛的衰减率是代数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Cauchy problem for the Vlasov–Riesz–Fokker–Planck system near the global Maxwellian

We prove the global existence and uniqueness of solutions to the Vlasov–Riesz–Fokker–Planck system around the global Maxwellian in the periodic spatial domain. Depending on the order of Riesz potential, we present two frameworks for the construction of global-in-time solutions with Sobolev and analytic regularity. The analytic function framework covers the Vlasov–Dirac–Benney–Fokker–Planck system. Furthermore, we show the exponential decay of solutions toward the global Maxwellian. Our result is generalized to the whole space case in which the decay rate of convergence is algebraic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信