带能量阻尼的围动力学模型的渐近平稳效应和全局吸引子

Flank D. M. Bezerra, Severino H. da Silva, Vando Narciso
{"title":"带能量阻尼的围动力学模型的渐近平稳效应和全局吸引子","authors":"Flank D. M. Bezerra, Severino H. da Silva, Vando Narciso","doi":"10.1002/zamm.202400187","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a peridynamic model with energy damping inspired by the works of Balakrishnan and Taylor on “damping models” based on the instantaneous total energy of the system. We study the asymptotic behavior of solutions, in the sense of attractors, of these peridynamic models in suitable phase space; more precisely, we prove a result of existence and characterization of compact global attractors with a nonlinear strongly continuous semigroup approach based in the asymptotic smoothness property thanks to Chueshov and Lasiecka and Nakao's lemma.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"146 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic smoothness effects and global attractor for a peridynamic model with energy damping\",\"authors\":\"Flank D. M. Bezerra, Severino H. da Silva, Vando Narciso\",\"doi\":\"10.1002/zamm.202400187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a peridynamic model with energy damping inspired by the works of Balakrishnan and Taylor on “damping models” based on the instantaneous total energy of the system. We study the asymptotic behavior of solutions, in the sense of attractors, of these peridynamic models in suitable phase space; more precisely, we prove a result of existence and characterization of compact global attractors with a nonlinear strongly continuous semigroup approach based in the asymptotic smoothness property thanks to Chueshov and Lasiecka and Nakao's lemma.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202400187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文受 Balakrishnan 和 Taylor 基于系统瞬时总能量的 "阻尼模型 "研究的启发,考虑了一种具有能量阻尼的周动态模型。我们研究了这些周动态模型在适当相空间中的吸引子意义上的解的渐近行为;更确切地说,我们利用基于渐近平滑特性的非线性强连续半群方法证明了紧凑全局吸引子的存在性和特征,这要归功于 Chueshov 和 Lasiecka 以及 Nakao 的lemma。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic smoothness effects and global attractor for a peridynamic model with energy damping
In this paper, we consider a peridynamic model with energy damping inspired by the works of Balakrishnan and Taylor on “damping models” based on the instantaneous total energy of the system. We study the asymptotic behavior of solutions, in the sense of attractors, of these peridynamic models in suitable phase space; more precisely, we prove a result of existence and characterization of compact global attractors with a nonlinear strongly continuous semigroup approach based in the asymptotic smoothness property thanks to Chueshov and Lasiecka and Nakao's lemma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信