反平面剪切波作用下无限长条中两条非相同边缘裂缝的解析解

Sourav Kumar Panja, Samim Alam, Subhas Chandra Mandal
{"title":"反平面剪切波作用下无限长条中两条非相同边缘裂缝的解析解","authors":"Sourav Kumar Panja, Samim Alam, Subhas Chandra Mandal","doi":"10.1002/zamm.202400162","DOIUrl":null,"url":null,"abstract":"This article presents an extensive analytical solution addressing the interaction between two non‐identical edge cracks in an infinite orthotropic strip under anti‐plane shear waves. Most studies assume identical cracks or single edge crack in a strip, but this research breaks new ground by considering cracks of different sizes. By incorporating mixed‐type boundary conditions, the study derives dual integral equations. These equations are then transformed into a singular integral equation of Cauchy type with the aid of a trial solution and contour integration technique. The singular integral equation is further converted into a system of integral equations, which are solved numerically utilizing Jacobi polynomials. The obtained solutions are utilized to derive expressions for the stress intensity factor (SIF) and crack opening displacement (COD) at the crack tip using Krenk's interpolation formulae. The derived results are presented graphically and compared against existing solutions for single edge crack and symmetric edge cracks in static scenario.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical solution of two non‐identical edge cracks in an infinite strip under anti‐plane shear wave\",\"authors\":\"Sourav Kumar Panja, Samim Alam, Subhas Chandra Mandal\",\"doi\":\"10.1002/zamm.202400162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an extensive analytical solution addressing the interaction between two non‐identical edge cracks in an infinite orthotropic strip under anti‐plane shear waves. Most studies assume identical cracks or single edge crack in a strip, but this research breaks new ground by considering cracks of different sizes. By incorporating mixed‐type boundary conditions, the study derives dual integral equations. These equations are then transformed into a singular integral equation of Cauchy type with the aid of a trial solution and contour integration technique. The singular integral equation is further converted into a system of integral equations, which are solved numerically utilizing Jacobi polynomials. The obtained solutions are utilized to derive expressions for the stress intensity factor (SIF) and crack opening displacement (COD) at the crack tip using Krenk's interpolation formulae. The derived results are presented graphically and compared against existing solutions for single edge crack and symmetric edge cracks in static scenario.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202400162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对反面剪切波作用下无限正交带材中两条非相同边缘裂缝之间的相互作用,提出了一个广泛的分析解决方案。大多数研究假设带材中存在相同的裂缝或单边裂缝,但本研究考虑了不同尺寸的裂缝,从而开辟了新天地。通过结合混合型边界条件,研究得出了二元积分方程。然后,借助试解和等值线积分技术,将这些方程转化为柯西型奇异积分方程。奇异积分方程进一步转化为积分方程组,利用雅可比多项式对其进行数值求解。利用求得的解,利用克伦克插值公式推导出裂缝顶端的应力强度因子 (SIF) 和裂缝开口位移 (COD) 的表达式。得出的结果以图表形式展示,并与现有的静态情况下单边缘裂缝和对称边缘裂缝的解决方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical solution of two non‐identical edge cracks in an infinite strip under anti‐plane shear wave
This article presents an extensive analytical solution addressing the interaction between two non‐identical edge cracks in an infinite orthotropic strip under anti‐plane shear waves. Most studies assume identical cracks or single edge crack in a strip, but this research breaks new ground by considering cracks of different sizes. By incorporating mixed‐type boundary conditions, the study derives dual integral equations. These equations are then transformed into a singular integral equation of Cauchy type with the aid of a trial solution and contour integration technique. The singular integral equation is further converted into a system of integral equations, which are solved numerically utilizing Jacobi polynomials. The obtained solutions are utilized to derive expressions for the stress intensity factor (SIF) and crack opening displacement (COD) at the crack tip using Krenk's interpolation formulae. The derived results are presented graphically and compared against existing solutions for single edge crack and symmetric edge cracks in static scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信