{"title":"基于 LQR 和模型辅助 LESO 的 PID 高级控制器","authors":"Chao Liu, XiaoXia Qiu, Yao Mao","doi":"10.1177/09596518241263538","DOIUrl":null,"url":null,"abstract":"The work described in this paper proposes a PID high-type controller turning via Linear Quadratic Regulator (LQR) approach and pole-placement technique to level up dynamic response performance and disturbance suppression ability of the system. Meanwhile, considering the influence of the modeling error and uncertain disturbance on the stability of the control system, this paper extends the design method of the Linear Extended State Observer (LESO) to PID high-type control loop. In this paper, the tuning rule of PID high-type controller parameters without delay factor and the tuning rule of PID high-type controller parameters with delay factor are given. Finally, the simulation analysis and experimental results show that performance of the PID high-type controller are superior to the PD controller in traditional LESO and the PID type-i controller. Specifically, the system under the PID high-type controller not only eliminates the high-order steady-state error, but also can achieve high-precision tracking when the reference signal changes quickly. Meanwhile, disturbance suppression ability of the system and the dynamic response performance of the system such as rise time, settling time are significantly improved.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"189 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The PID high-type controller based on LQR and model-assisted LESO\",\"authors\":\"Chao Liu, XiaoXia Qiu, Yao Mao\",\"doi\":\"10.1177/09596518241263538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work described in this paper proposes a PID high-type controller turning via Linear Quadratic Regulator (LQR) approach and pole-placement technique to level up dynamic response performance and disturbance suppression ability of the system. Meanwhile, considering the influence of the modeling error and uncertain disturbance on the stability of the control system, this paper extends the design method of the Linear Extended State Observer (LESO) to PID high-type control loop. In this paper, the tuning rule of PID high-type controller parameters without delay factor and the tuning rule of PID high-type controller parameters with delay factor are given. Finally, the simulation analysis and experimental results show that performance of the PID high-type controller are superior to the PD controller in traditional LESO and the PID type-i controller. Specifically, the system under the PID high-type controller not only eliminates the high-order steady-state error, but also can achieve high-precision tracking when the reference signal changes quickly. Meanwhile, disturbance suppression ability of the system and the dynamic response performance of the system such as rise time, settling time are significantly improved.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518241263538\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518241263538","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
The PID high-type controller based on LQR and model-assisted LESO
The work described in this paper proposes a PID high-type controller turning via Linear Quadratic Regulator (LQR) approach and pole-placement technique to level up dynamic response performance and disturbance suppression ability of the system. Meanwhile, considering the influence of the modeling error and uncertain disturbance on the stability of the control system, this paper extends the design method of the Linear Extended State Observer (LESO) to PID high-type control loop. In this paper, the tuning rule of PID high-type controller parameters without delay factor and the tuning rule of PID high-type controller parameters with delay factor are given. Finally, the simulation analysis and experimental results show that performance of the PID high-type controller are superior to the PD controller in traditional LESO and the PID type-i controller. Specifically, the system under the PID high-type controller not only eliminates the high-order steady-state error, but also can achieve high-precision tracking when the reference signal changes quickly. Meanwhile, disturbance suppression ability of the system and the dynamic response performance of the system such as rise time, settling time are significantly improved.
期刊介绍:
Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies.
"It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK
This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.