{"title":"探索光纤耦合的两个开放式微腔中的双外显子可转向性和非局域性动力学","authors":"F. M. Aldosari, M. Hashem","doi":"10.1002/andp.202400108","DOIUrl":null,"url":null,"abstract":"<p>This work will explore the generations of quantum nonlocalities (as entanglement, Bellnonlocality, and steerability) for two quantum wells (excitons) in dissipative microcavities containing a linear optical medium. An optical fiber links the microcavities. The generated two-exciton nonlocalities are explored by using Bell inequality, steering inequality, and entanglement of formation. For initial correlated and uncorrelated states, the ability of the excitation–photon–fiber interactions to produce new generation and robustness of the two-exciton nonlocality is investigated under the effects of the couplings of the exciton–photon and fiber–photon interactions as well as of the dissipations and the optical susceptibility. It is found that increasing the optical susceptibility enhances the regularity and amplitudes, reduces the frequencies of two-exciton nonlocality dynamics, and supports dissipation degradations. For the initial uncorrelated state, decreasing the difference between the exciton–photon and fiber–photon couplings enhances the generations of the nonlocalities. For the initial correlated state, increasing the exciton–photon and fiber–photon couplings enhances the nonlocality conservation. For open microcavites, increasing the exciton–photon and fiber–photon couplings and the difference between them supports the nonlocality degradations resulting from the external environment dissipations.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Two-Exciton Steerability and Nonlocality Dynamics in Two Open Microcavities Coupled by an Optical Fiber\",\"authors\":\"F. M. Aldosari, M. Hashem\",\"doi\":\"10.1002/andp.202400108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work will explore the generations of quantum nonlocalities (as entanglement, Bellnonlocality, and steerability) for two quantum wells (excitons) in dissipative microcavities containing a linear optical medium. An optical fiber links the microcavities. The generated two-exciton nonlocalities are explored by using Bell inequality, steering inequality, and entanglement of formation. For initial correlated and uncorrelated states, the ability of the excitation–photon–fiber interactions to produce new generation and robustness of the two-exciton nonlocality is investigated under the effects of the couplings of the exciton–photon and fiber–photon interactions as well as of the dissipations and the optical susceptibility. It is found that increasing the optical susceptibility enhances the regularity and amplitudes, reduces the frequencies of two-exciton nonlocality dynamics, and supports dissipation degradations. For the initial uncorrelated state, decreasing the difference between the exciton–photon and fiber–photon couplings enhances the generations of the nonlocalities. For the initial correlated state, increasing the exciton–photon and fiber–photon couplings enhances the nonlocality conservation. For open microcavites, increasing the exciton–photon and fiber–photon couplings and the difference between them supports the nonlocality degradations resulting from the external environment dissipations.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"536 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400108\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400108","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring Two-Exciton Steerability and Nonlocality Dynamics in Two Open Microcavities Coupled by an Optical Fiber
This work will explore the generations of quantum nonlocalities (as entanglement, Bellnonlocality, and steerability) for two quantum wells (excitons) in dissipative microcavities containing a linear optical medium. An optical fiber links the microcavities. The generated two-exciton nonlocalities are explored by using Bell inequality, steering inequality, and entanglement of formation. For initial correlated and uncorrelated states, the ability of the excitation–photon–fiber interactions to produce new generation and robustness of the two-exciton nonlocality is investigated under the effects of the couplings of the exciton–photon and fiber–photon interactions as well as of the dissipations and the optical susceptibility. It is found that increasing the optical susceptibility enhances the regularity and amplitudes, reduces the frequencies of two-exciton nonlocality dynamics, and supports dissipation degradations. For the initial uncorrelated state, decreasing the difference between the exciton–photon and fiber–photon couplings enhances the generations of the nonlocalities. For the initial correlated state, increasing the exciton–photon and fiber–photon couplings enhances the nonlocality conservation. For open microcavites, increasing the exciton–photon and fiber–photon couplings and the difference between them supports the nonlocality degradations resulting from the external environment dissipations.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.