{"title":"有限基元群非冗余基的枢轴性","authors":"Fabio Mastrogiacomo","doi":"arxiv-2407.20849","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite permutation group acting on a set $\\Omega$. An ordered\nsequence $(\\omega_1,\\ldots,\\omega_\\ell)$ of elements of $\\Omega$ is an\nirredundant base for $G$ if the pointwise stabilizer of the sequence is trivial\nand no point is fixed by the stabilizer of its predecessors. We show that any\ninterval of natural numbers can be realized as the set of cardinalities of\nirredundant bases for some finite primitive group.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardinalities of irredundant bases of finite primitive groups\",\"authors\":\"Fabio Mastrogiacomo\",\"doi\":\"arxiv-2407.20849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite permutation group acting on a set $\\\\Omega$. An ordered\\nsequence $(\\\\omega_1,\\\\ldots,\\\\omega_\\\\ell)$ of elements of $\\\\Omega$ is an\\nirredundant base for $G$ if the pointwise stabilizer of the sequence is trivial\\nand no point is fixed by the stabilizer of its predecessors. We show that any\\ninterval of natural numbers can be realized as the set of cardinalities of\\nirredundant bases for some finite primitive group.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cardinalities of irredundant bases of finite primitive groups
Let $G$ be a finite permutation group acting on a set $\Omega$. An ordered
sequence $(\omega_1,\ldots,\omega_\ell)$ of elements of $\Omega$ is an
irredundant base for $G$ if the pointwise stabilizer of the sequence is trivial
and no point is fixed by the stabilizer of its predecessors. We show that any
interval of natural numbers can be realized as the set of cardinalities of
irredundant bases for some finite primitive group.