有限基元群非冗余基的枢轴性

Fabio Mastrogiacomo
{"title":"有限基元群非冗余基的枢轴性","authors":"Fabio Mastrogiacomo","doi":"arxiv-2407.20849","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite permutation group acting on a set $\\Omega$. An ordered\nsequence $(\\omega_1,\\ldots,\\omega_\\ell)$ of elements of $\\Omega$ is an\nirredundant base for $G$ if the pointwise stabilizer of the sequence is trivial\nand no point is fixed by the stabilizer of its predecessors. We show that any\ninterval of natural numbers can be realized as the set of cardinalities of\nirredundant bases for some finite primitive group.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardinalities of irredundant bases of finite primitive groups\",\"authors\":\"Fabio Mastrogiacomo\",\"doi\":\"arxiv-2407.20849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite permutation group acting on a set $\\\\Omega$. An ordered\\nsequence $(\\\\omega_1,\\\\ldots,\\\\omega_\\\\ell)$ of elements of $\\\\Omega$ is an\\nirredundant base for $G$ if the pointwise stabilizer of the sequence is trivial\\nand no point is fixed by the stabilizer of its predecessors. We show that any\\ninterval of natural numbers can be realized as the set of cardinalities of\\nirredundant bases for some finite primitive group.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $G$ 是作用于集合 $\Omega$ 的有限置换群。如果$\Omega$元素的有序序列$(\omega_1,\ldots,\omega_\ell)$的点稳定器是微不足道的,并且没有点被其前序的稳定器固定,那么这个序列就是$G$的冗余基。我们证明,自然数的任何区间都可以实现为某个有限基元群的冗基的心数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardinalities of irredundant bases of finite primitive groups
Let $G$ be a finite permutation group acting on a set $\Omega$. An ordered sequence $(\omega_1,\ldots,\omega_\ell)$ of elements of $\Omega$ is an irredundant base for $G$ if the pointwise stabilizer of the sequence is trivial and no point is fixed by the stabilizer of its predecessors. We show that any interval of natural numbers can be realized as the set of cardinalities of irredundant bases for some finite primitive group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信