Henner Gimpel, Robert Laubacher, Oliver Meindl, Moritz Wöhl, Luca Dombetzki
{"title":"利用自然语言处理推进宏观任务众包促进中的内容合成","authors":"Henner Gimpel, Robert Laubacher, Oliver Meindl, Moritz Wöhl, Luca Dombetzki","doi":"10.1007/s10726-024-09894-w","DOIUrl":null,"url":null,"abstract":"<p>Macro-task crowdsourcing presents a promising approach to address wicked problems like climate change by leveraging the collective efforts of a diverse crowd. Such macro-task crowdsourcing requires facilitation. However, in the facilitation process, traditionally aggregating and synthesizing text contributions from the crowd is labor-intensive, demanding expertise and time from facilitators. Recent advancements in large language models (LLMs) have demonstrated human-level performance in natural language processing. This paper proposes an abstract design for an information system, developed through four iterations of a prototype, to support the synthesis process of contributions using LLM-based natural language processing. The prototype demonstrated promising results, enhancing efficiency and effectiveness in synthesis activities for macro-task crowdsourcing facilitation. By streamlining the synthesis process, the proposed system significantly reduces the effort to synthesize content, allowing for stronger integration of synthesized content into the discussions to reach consensus, ideally leading to more meaningful outcomes.</p>","PeriodicalId":47553,"journal":{"name":"Group Decision and Negotiation","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Content Synthesis in Macro-Task Crowdsourcing Facilitation Leveraging Natural Language Processing\",\"authors\":\"Henner Gimpel, Robert Laubacher, Oliver Meindl, Moritz Wöhl, Luca Dombetzki\",\"doi\":\"10.1007/s10726-024-09894-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Macro-task crowdsourcing presents a promising approach to address wicked problems like climate change by leveraging the collective efforts of a diverse crowd. Such macro-task crowdsourcing requires facilitation. However, in the facilitation process, traditionally aggregating and synthesizing text contributions from the crowd is labor-intensive, demanding expertise and time from facilitators. Recent advancements in large language models (LLMs) have demonstrated human-level performance in natural language processing. This paper proposes an abstract design for an information system, developed through four iterations of a prototype, to support the synthesis process of contributions using LLM-based natural language processing. The prototype demonstrated promising results, enhancing efficiency and effectiveness in synthesis activities for macro-task crowdsourcing facilitation. By streamlining the synthesis process, the proposed system significantly reduces the effort to synthesize content, allowing for stronger integration of synthesized content into the discussions to reach consensus, ideally leading to more meaningful outcomes.</p>\",\"PeriodicalId\":47553,\"journal\":{\"name\":\"Group Decision and Negotiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Group Decision and Negotiation\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s10726-024-09894-w\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Group Decision and Negotiation","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10726-024-09894-w","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Advancing Content Synthesis in Macro-Task Crowdsourcing Facilitation Leveraging Natural Language Processing
Macro-task crowdsourcing presents a promising approach to address wicked problems like climate change by leveraging the collective efforts of a diverse crowd. Such macro-task crowdsourcing requires facilitation. However, in the facilitation process, traditionally aggregating and synthesizing text contributions from the crowd is labor-intensive, demanding expertise and time from facilitators. Recent advancements in large language models (LLMs) have demonstrated human-level performance in natural language processing. This paper proposes an abstract design for an information system, developed through four iterations of a prototype, to support the synthesis process of contributions using LLM-based natural language processing. The prototype demonstrated promising results, enhancing efficiency and effectiveness in synthesis activities for macro-task crowdsourcing facilitation. By streamlining the synthesis process, the proposed system significantly reduces the effort to synthesize content, allowing for stronger integration of synthesized content into the discussions to reach consensus, ideally leading to more meaningful outcomes.
期刊介绍:
The idea underlying the journal, Group Decision and Negotiation, emerges from evolving, unifying approaches to group decision and negotiation processes. These processes are complex and self-organizing involving multiplayer, multicriteria, ill-structured, evolving, dynamic problems. Approaches include (1) computer group decision and negotiation support systems (GDNSS), (2) artificial intelligence and management science, (3) applied game theory, experiment and social choice, and (4) cognitive/behavioral sciences in group decision and negotiation. A number of research studies combine two or more of these fields. The journal provides a publication vehicle for theoretical and empirical research, and real-world applications and case studies. In defining the domain of group decision and negotiation, the term `group'' is interpreted to comprise all multiplayer contexts. Thus, organizational decision support systems providing organization-wide support are included. Group decision and negotiation refers to the whole process or flow of activities relevant to group decision and negotiation, not only to the final choice itself, e.g. scanning, communication and information sharing, problem definition (representation) and evolution, alternative generation and social-emotional interaction. Descriptive, normative and design viewpoints are of interest. Thus, Group Decision and Negotiation deals broadly with relation and coordination in group processes. Areas of application include intraorganizational coordination (as in operations management and integrated design, production, finance, marketing and distribution, e.g. as in new products and global coordination), computer supported collaborative work, labor-management negotiations, interorganizational negotiations, (business, government and nonprofits -- e.g. joint ventures), international (intercultural) negotiations, environmental negotiations, etc. The journal also covers developments of software f or group decision and negotiation.