利用自然语言处理推进宏观任务众包促进中的内容合成

IF 3.6 4区 管理学 Q2 MANAGEMENT
Henner Gimpel, Robert Laubacher, Oliver Meindl, Moritz Wöhl, Luca Dombetzki
{"title":"利用自然语言处理推进宏观任务众包促进中的内容合成","authors":"Henner Gimpel, Robert Laubacher, Oliver Meindl, Moritz Wöhl, Luca Dombetzki","doi":"10.1007/s10726-024-09894-w","DOIUrl":null,"url":null,"abstract":"<p>Macro-task crowdsourcing presents a promising approach to address wicked problems like climate change by leveraging the collective efforts of a diverse crowd. Such macro-task crowdsourcing requires facilitation. However, in the facilitation process, traditionally aggregating and synthesizing text contributions from the crowd is labor-intensive, demanding expertise and time from facilitators. Recent advancements in large language models (LLMs) have demonstrated human-level performance in natural language processing. This paper proposes an abstract design for an information system, developed through four iterations of a prototype, to support the synthesis process of contributions using LLM-based natural language processing. The prototype demonstrated promising results, enhancing efficiency and effectiveness in synthesis activities for macro-task crowdsourcing facilitation. By streamlining the synthesis process, the proposed system significantly reduces the effort to synthesize content, allowing for stronger integration of synthesized content into the discussions to reach consensus, ideally leading to more meaningful outcomes.</p>","PeriodicalId":47553,"journal":{"name":"Group Decision and Negotiation","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Content Synthesis in Macro-Task Crowdsourcing Facilitation Leveraging Natural Language Processing\",\"authors\":\"Henner Gimpel, Robert Laubacher, Oliver Meindl, Moritz Wöhl, Luca Dombetzki\",\"doi\":\"10.1007/s10726-024-09894-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Macro-task crowdsourcing presents a promising approach to address wicked problems like climate change by leveraging the collective efforts of a diverse crowd. Such macro-task crowdsourcing requires facilitation. However, in the facilitation process, traditionally aggregating and synthesizing text contributions from the crowd is labor-intensive, demanding expertise and time from facilitators. Recent advancements in large language models (LLMs) have demonstrated human-level performance in natural language processing. This paper proposes an abstract design for an information system, developed through four iterations of a prototype, to support the synthesis process of contributions using LLM-based natural language processing. The prototype demonstrated promising results, enhancing efficiency and effectiveness in synthesis activities for macro-task crowdsourcing facilitation. By streamlining the synthesis process, the proposed system significantly reduces the effort to synthesize content, allowing for stronger integration of synthesized content into the discussions to reach consensus, ideally leading to more meaningful outcomes.</p>\",\"PeriodicalId\":47553,\"journal\":{\"name\":\"Group Decision and Negotiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Group Decision and Negotiation\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s10726-024-09894-w\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Group Decision and Negotiation","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10726-024-09894-w","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

宏观任务众包是利用不同人群的集体努力来解决气候变化等棘手问题的一种有前途的方法。这种宏观任务众包需要协助。然而,在促进过程中,传统上对来自人群的文本贡献进行聚合和综合是一项劳动密集型工作,对促进者的专业知识和时间要求很高。大型语言模型(LLMs)的最新进展表明,其在自然语言处理方面的性能已达到人类水平。本文提出了一种信息系统的抽象设计,通过对原型进行四次迭代开发而成,以支持使用基于 LLM 的自然语言处理技术进行贡献合成的过程。该原型取得了可喜的成果,提高了宏观任务众包促进合成活动的效率和效果。通过简化合成过程,拟议的系统大大减少了合成内容的工作量,使合成内容能够更有力地融入讨论以达成共识,从而取得更有意义的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing Content Synthesis in Macro-Task Crowdsourcing Facilitation Leveraging Natural Language Processing

Advancing Content Synthesis in Macro-Task Crowdsourcing Facilitation Leveraging Natural Language Processing

Macro-task crowdsourcing presents a promising approach to address wicked problems like climate change by leveraging the collective efforts of a diverse crowd. Such macro-task crowdsourcing requires facilitation. However, in the facilitation process, traditionally aggregating and synthesizing text contributions from the crowd is labor-intensive, demanding expertise and time from facilitators. Recent advancements in large language models (LLMs) have demonstrated human-level performance in natural language processing. This paper proposes an abstract design for an information system, developed through four iterations of a prototype, to support the synthesis process of contributions using LLM-based natural language processing. The prototype demonstrated promising results, enhancing efficiency and effectiveness in synthesis activities for macro-task crowdsourcing facilitation. By streamlining the synthesis process, the proposed system significantly reduces the effort to synthesize content, allowing for stronger integration of synthesized content into the discussions to reach consensus, ideally leading to more meaningful outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.70%
发文量
32
期刊介绍: The idea underlying the journal, Group Decision and Negotiation, emerges from evolving, unifying approaches to group decision and negotiation processes. These processes are complex and self-organizing involving multiplayer, multicriteria, ill-structured, evolving, dynamic problems. Approaches include (1) computer group decision and negotiation support systems (GDNSS), (2) artificial intelligence and management science, (3) applied game theory, experiment and social choice, and (4) cognitive/behavioral sciences in group decision and negotiation. A number of research studies combine two or more of these fields. The journal provides a publication vehicle for theoretical and empirical research, and real-world applications and case studies. In defining the domain of group decision and negotiation, the term `group'' is interpreted to comprise all multiplayer contexts. Thus, organizational decision support systems providing organization-wide support are included. Group decision and negotiation refers to the whole process or flow of activities relevant to group decision and negotiation, not only to the final choice itself, e.g. scanning, communication and information sharing, problem definition (representation) and evolution, alternative generation and social-emotional interaction. Descriptive, normative and design viewpoints are of interest. Thus, Group Decision and Negotiation deals broadly with relation and coordination in group processes. Areas of application include intraorganizational coordination (as in operations management and integrated design, production, finance, marketing and distribution, e.g. as in new products and global coordination), computer supported collaborative work, labor-management negotiations, interorganizational negotiations, (business, government and nonprofits -- e.g. joint ventures), international (intercultural) negotiations, environmental negotiations, etc. The journal also covers developments of software f or group decision and negotiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信