利用拉普拉斯变换重访抛物柱面函数

Rodica D. Costin, Georgios Mavrogiannis
{"title":"利用拉普拉斯变换重访抛物柱面函数","authors":"Rodica D. Costin, Georgios Mavrogiannis","doi":"arxiv-2407.20403","DOIUrl":null,"url":null,"abstract":"In this paper we gather and extend classical results for parabolic cylinder\nfunctions, namely solutions of the Weber differential equations, using a\nsystematic approach by Borel-Laplace methods. We revisit the definition and construction of the standard solutions $U,V$ of\nthe Weber differential equation \\begin{equation*}\nw''(z)-\\left(\\frac{z^2}{4}+a\\right)w(z)=0 \\end{equation*} and provide\nrepresentations by Laplace integrals extended to include all values of the\ncomplex parameter $a$; we find an integral integral representation for the\nfunction $V$; none was previously available. For the Weber equation in the form \\begin{equation*} u''(x)+\\left(\\frac{x^2}{4}-a\\right)u(x)=0, \\end{equation*} we define a new\nfundamental system $E_\\pm$ which is analytic in $a\\in\\mathbb{C}$, based on\nasymptotic behavior; they appropriately extend and modify the classical\nsolutions $E,E^*$ of the real Weber equation to the complex domain. The techniques used are general and we include details and motivations for\nthe approach.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parabolic cylinder functions revisited using the Laplace transform\",\"authors\":\"Rodica D. Costin, Georgios Mavrogiannis\",\"doi\":\"arxiv-2407.20403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we gather and extend classical results for parabolic cylinder\\nfunctions, namely solutions of the Weber differential equations, using a\\nsystematic approach by Borel-Laplace methods. We revisit the definition and construction of the standard solutions $U,V$ of\\nthe Weber differential equation \\\\begin{equation*}\\nw''(z)-\\\\left(\\\\frac{z^2}{4}+a\\\\right)w(z)=0 \\\\end{equation*} and provide\\nrepresentations by Laplace integrals extended to include all values of the\\ncomplex parameter $a$; we find an integral integral representation for the\\nfunction $V$; none was previously available. For the Weber equation in the form \\\\begin{equation*} u''(x)+\\\\left(\\\\frac{x^2}{4}-a\\\\right)u(x)=0, \\\\end{equation*} we define a new\\nfundamental system $E_\\\\pm$ which is analytic in $a\\\\in\\\\mathbb{C}$, based on\\nasymptotic behavior; they appropriately extend and modify the classical\\nsolutions $E,E^*$ of the real Weber equation to the complex domain. The techniques used are general and we include details and motivations for\\nthe approach.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用波尔-拉普拉斯方法系统地收集并扩展了抛物柱面函数的经典结果,即韦伯微分方程的解。我们重温了韦伯微分方程标准解 $U,V$ 的定义和构造 \begin{equation*}w''(z)-\left(\frac{z^2}{4}+a\right)w(z)=0 \end{equation*} 并提供了拉普拉斯积分的表示,扩展到包括复参数 $a$ 的所有值;我们发现了函数 $V$ 的积分表示;以前没有这种表示。对于形式为 \begin{equation*} u''(x)+\left(\frac{x^2}{4}-a\right)u(x)=0, \end{equation*} 的韦伯方程,我们基于渐近行为定义了一个新的基本系统 $E_\pm$,它在 $a\in\mathbb{C}$ 中是解析的;它们将实数韦伯方程的经典解 $E,E^*$适当地扩展和修改到了复数域。所使用的技术是通用的,我们还包括该方法的细节和动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parabolic cylinder functions revisited using the Laplace transform
In this paper we gather and extend classical results for parabolic cylinder functions, namely solutions of the Weber differential equations, using a systematic approach by Borel-Laplace methods. We revisit the definition and construction of the standard solutions $U,V$ of the Weber differential equation \begin{equation*} w''(z)-\left(\frac{z^2}{4}+a\right)w(z)=0 \end{equation*} and provide representations by Laplace integrals extended to include all values of the complex parameter $a$; we find an integral integral representation for the function $V$; none was previously available. For the Weber equation in the form \begin{equation*} u''(x)+\left(\frac{x^2}{4}-a\right)u(x)=0, \end{equation*} we define a new fundamental system $E_\pm$ which is analytic in $a\in\mathbb{C}$, based on asymptotic behavior; they appropriately extend and modify the classical solutions $E,E^*$ of the real Weber equation to the complex domain. The techniques used are general and we include details and motivations for the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信