Wengang Zhou;Jiajun Deng;Niculae Sebe;Qi Tian;Alan L. Yuille;Concetto Spampinato;Zakia Hammal
{"title":"多模态理解的预训练模型》特约编辑导言","authors":"Wengang Zhou;Jiajun Deng;Niculae Sebe;Qi Tian;Alan L. Yuille;Concetto Spampinato;Zakia Hammal","doi":"10.1109/TMM.2024.3384680","DOIUrl":null,"url":null,"abstract":"In the ever-evolving domain of multimedia, the significance of multi-modality understanding cannot be overstated. As multimedia content becomes increasingly sophisticated and ubiquitous, the ability to effectively combine and analyze the diverse information from different types of data, such as text, audio, image, video and point clouds, will be paramount in pushing the boundaries of what technology can achieve in understanding and interacting with the world around us. Accordingly, multi-modality understanding has attracted a tremendous amount of research, establishing itself as an emerging topic. Pre-trained models, in particular, have revolutionized this field, providing a way to leverage vast amounts of data without task-specific annotation to facilitate various downstream tasks.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"8291-8296"},"PeriodicalIF":8.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10616245","citationCount":"0","resultStr":"{\"title\":\"Guest Editorial Introduction to the Issue on Pre-Trained Models for Multi-Modality Understanding\",\"authors\":\"Wengang Zhou;Jiajun Deng;Niculae Sebe;Qi Tian;Alan L. Yuille;Concetto Spampinato;Zakia Hammal\",\"doi\":\"10.1109/TMM.2024.3384680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the ever-evolving domain of multimedia, the significance of multi-modality understanding cannot be overstated. As multimedia content becomes increasingly sophisticated and ubiquitous, the ability to effectively combine and analyze the diverse information from different types of data, such as text, audio, image, video and point clouds, will be paramount in pushing the boundaries of what technology can achieve in understanding and interacting with the world around us. Accordingly, multi-modality understanding has attracted a tremendous amount of research, establishing itself as an emerging topic. Pre-trained models, in particular, have revolutionized this field, providing a way to leverage vast amounts of data without task-specific annotation to facilitate various downstream tasks.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"8291-8296\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10616245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10616245/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10616245/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Guest Editorial Introduction to the Issue on Pre-Trained Models for Multi-Modality Understanding
In the ever-evolving domain of multimedia, the significance of multi-modality understanding cannot be overstated. As multimedia content becomes increasingly sophisticated and ubiquitous, the ability to effectively combine and analyze the diverse information from different types of data, such as text, audio, image, video and point clouds, will be paramount in pushing the boundaries of what technology can achieve in understanding and interacting with the world around us. Accordingly, multi-modality understanding has attracted a tremendous amount of research, establishing itself as an emerging topic. Pre-trained models, in particular, have revolutionized this field, providing a way to leverage vast amounts of data without task-specific annotation to facilitate various downstream tasks.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.