论加权大勒贝格空间中正弦和余弦函数的指数和三角函数系统的基础性质

IF 0.2 Q4 MATHEMATICS
M. I. Ismailov, I. F. Aliyarova
{"title":"论加权大勒贝格空间中正弦和余弦函数的指数和三角函数系统的基础性质","authors":"M. I. Ismailov, I. F. Aliyarova","doi":"10.3103/s0027132224700128","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper is focused on the basis property of the system of exponentials and trigonometric systems of sine and cosine functions in a separable subspace of the weighted grand Lebesgue space generated by the shift operator. In this paper, with the help of the shift operator, a separable subspace <span>\\(G_{p),\\rho}(a,b)\\)</span> of the weighted space of the grand Lebesgue space <span>\\(L_{p),\\rho}(a,b)\\)</span> is defined. The density in <span>\\(G_{p),\\rho}(a,b)\\)</span> of the set <span>\\(G_{0}^{\\infty}([a,b])\\)</span> of infinitely differentiable functions that are finite on <span>\\([a,b]\\)</span> is studied. It is proved that if the weight function <span>\\(\\rho\\)</span> satisfies the Mackenhoupt condition, then the system of exponentials <span>\\(\\left\\{e^{int}\\right\\}_{n\\in Z}\\)</span> forms a basis in <span>\\(G_{p),\\rho}(-\\pi,\\pi)\\)</span>, and trigonometric systems of sine <span>\\(\\left\\{\\sin nt\\right\\}_{n\\geqslant 1}\\)</span> and cosine <span>\\(\\left\\{\\cos nt\\right\\}_{n\\geqslant 0}\\)</span> functions form bases in <span>\\(G_{p),\\rho}(0,\\pi)\\)</span>.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Basis Property of the System of Exponentials and Trigonometric Systems of Sine and Cosine Functions in Weighted Grand Lebesgue Spaces\",\"authors\":\"M. I. Ismailov, I. F. Aliyarova\",\"doi\":\"10.3103/s0027132224700128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper is focused on the basis property of the system of exponentials and trigonometric systems of sine and cosine functions in a separable subspace of the weighted grand Lebesgue space generated by the shift operator. In this paper, with the help of the shift operator, a separable subspace <span>\\\\(G_{p),\\\\rho}(a,b)\\\\)</span> of the weighted space of the grand Lebesgue space <span>\\\\(L_{p),\\\\rho}(a,b)\\\\)</span> is defined. The density in <span>\\\\(G_{p),\\\\rho}(a,b)\\\\)</span> of the set <span>\\\\(G_{0}^{\\\\infty}([a,b])\\\\)</span> of infinitely differentiable functions that are finite on <span>\\\\([a,b]\\\\)</span> is studied. It is proved that if the weight function <span>\\\\(\\\\rho\\\\)</span> satisfies the Mackenhoupt condition, then the system of exponentials <span>\\\\(\\\\left\\\\{e^{int}\\\\right\\\\}_{n\\\\in Z}\\\\)</span> forms a basis in <span>\\\\(G_{p),\\\\rho}(-\\\\pi,\\\\pi)\\\\)</span>, and trigonometric systems of sine <span>\\\\(\\\\left\\\\{\\\\sin nt\\\\right\\\\}_{n\\\\geqslant 1}\\\\)</span> and cosine <span>\\\\(\\\\left\\\\{\\\\cos nt\\\\right\\\\}_{n\\\\geqslant 0}\\\\)</span> functions form bases in <span>\\\\(G_{p),\\\\rho}(0,\\\\pi)\\\\)</span>.</p>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132224700128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132224700128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文主要研究在移位算子产生的加权大勒贝斯格空间的可分离子空间中正弦和余弦函数的指数和三角函数系统的基础性质。本文借助移位算子,定义了大勒贝格空间的加权空间 \(L_{p),\rho}(a,b)\)的可分离子空间 \(G_{p),\rho}(a,b)\)。研究了在\([a,b]\)上有限的无限微分函数集合\(G_{0}^{\infty}([a,b])\)的密度。研究证明,如果权重函数 \(\rho\) 满足 Mackenhoupt 条件,那么指数系统 \(\left\{e^{int}\right\}_{n\in Z}\) 在 \(G_{p),\rho}(-\pi、\和余弦函数的三角函数系形成了 \(G_{p),\rho}(0,\pi)\) 中的基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Basis Property of the System of Exponentials and Trigonometric Systems of Sine and Cosine Functions in Weighted Grand Lebesgue Spaces

Abstract

The paper is focused on the basis property of the system of exponentials and trigonometric systems of sine and cosine functions in a separable subspace of the weighted grand Lebesgue space generated by the shift operator. In this paper, with the help of the shift operator, a separable subspace \(G_{p),\rho}(a,b)\) of the weighted space of the grand Lebesgue space \(L_{p),\rho}(a,b)\) is defined. The density in \(G_{p),\rho}(a,b)\) of the set \(G_{0}^{\infty}([a,b])\) of infinitely differentiable functions that are finite on \([a,b]\) is studied. It is proved that if the weight function \(\rho\) satisfies the Mackenhoupt condition, then the system of exponentials \(\left\{e^{int}\right\}_{n\in Z}\) forms a basis in \(G_{p),\rho}(-\pi,\pi)\), and trigonometric systems of sine \(\left\{\sin nt\right\}_{n\geqslant 1}\) and cosine \(\left\{\cos nt\right\}_{n\geqslant 0}\) functions form bases in \(G_{p),\rho}(0,\pi)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信