Chiara Aquino, Edward T. A. Mitchard, Iain M. McNicol, Harry Carstairs, Andrew Burt, Beisit L. P. Vilca, Sylvia Mayta, Mathias Disney
{"title":"利用光学卫星数据检测热带森林中的选择性砍伐:秘鲁的一项实验表明,3 米处的纹理效果最佳","authors":"Chiara Aquino, Edward T. A. Mitchard, Iain M. McNicol, Harry Carstairs, Andrew Burt, Beisit L. P. Vilca, Sylvia Mayta, Mathias Disney","doi":"10.1002/rse2.414","DOIUrl":null,"url":null,"abstract":"Selective logging is known to be widespread in the tropics, but is currently very poorly mapped, in part because there is little quantitative data on which satellite sensor characteristics and analysis methods are best at detecting it. To improve this, we used data from the Tropical Forest Degradation Experiment (FODEX) plots in the southern Peruvian Amazon, where different numbers of trees had been removed from four plots of 1 ha each, carefully inventoried by hand and terrestrial laser scanning before and after the logging to give a range of biomass loss (∆AGB) values. We conducted a comparative study of six multispectral optical satellite sensors at 0.3–30 m spatial resolution, to find the best combination of sensor and remote sensing indicator for change detection. Spectral reflectance, the normalised difference vegetation index (NDVI) and texture parameters were extracted after radiometric calibration and image preprocessing. The strength of the relationships between the change in these values and field‐measured ∆AGB (computed in % ha<jats:sup>−1</jats:sup>) was analysed. The results demonstrate that: (a) texture measures correlates more with ∆AGB than simple spectral parameters; (b) the strongest correlations are achieved for those sensors with spatial resolutions in the intermediate range (1.5–10 m), with finer or coarser resolutions producing worse results, and (c) when texture is computed using a moving square window ranging between 9 and 14 m in length. Maps predicting ∆AGB showed very promising results using a NIR‐derived texture parameter for 3 m resolution PlanetScope (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.97 and root mean square error (RMSE) = 1.91% ha<jats:sup>−1</jats:sup>), followed by 1.5 m SPOT‐7 (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.76 and RMSE = 5.06% ha<jats:sup>−1</jats:sup>) and 10 m Sentinel‐2 (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.79 and RMSE = 4.77% ha<jats:sup>−1</jats:sup>). Our findings imply that, at least for lowland Peru, low‐medium intensity disturbance can be detected best in optical wavelengths using a texture measure derived from 3 m PlanetScope data.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"6 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting selective logging in tropical forests with optical satellite data: an experiment in Peru shows texture at 3 m gives the best results\",\"authors\":\"Chiara Aquino, Edward T. A. Mitchard, Iain M. McNicol, Harry Carstairs, Andrew Burt, Beisit L. P. Vilca, Sylvia Mayta, Mathias Disney\",\"doi\":\"10.1002/rse2.414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective logging is known to be widespread in the tropics, but is currently very poorly mapped, in part because there is little quantitative data on which satellite sensor characteristics and analysis methods are best at detecting it. To improve this, we used data from the Tropical Forest Degradation Experiment (FODEX) plots in the southern Peruvian Amazon, where different numbers of trees had been removed from four plots of 1 ha each, carefully inventoried by hand and terrestrial laser scanning before and after the logging to give a range of biomass loss (∆AGB) values. We conducted a comparative study of six multispectral optical satellite sensors at 0.3–30 m spatial resolution, to find the best combination of sensor and remote sensing indicator for change detection. Spectral reflectance, the normalised difference vegetation index (NDVI) and texture parameters were extracted after radiometric calibration and image preprocessing. The strength of the relationships between the change in these values and field‐measured ∆AGB (computed in % ha<jats:sup>−1</jats:sup>) was analysed. The results demonstrate that: (a) texture measures correlates more with ∆AGB than simple spectral parameters; (b) the strongest correlations are achieved for those sensors with spatial resolutions in the intermediate range (1.5–10 m), with finer or coarser resolutions producing worse results, and (c) when texture is computed using a moving square window ranging between 9 and 14 m in length. Maps predicting ∆AGB showed very promising results using a NIR‐derived texture parameter for 3 m resolution PlanetScope (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.97 and root mean square error (RMSE) = 1.91% ha<jats:sup>−1</jats:sup>), followed by 1.5 m SPOT‐7 (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.76 and RMSE = 5.06% ha<jats:sup>−1</jats:sup>) and 10 m Sentinel‐2 (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.79 and RMSE = 4.77% ha<jats:sup>−1</jats:sup>). Our findings imply that, at least for lowland Peru, low‐medium intensity disturbance can be detected best in optical wavelengths using a texture measure derived from 3 m PlanetScope data.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.414\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.414","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Detecting selective logging in tropical forests with optical satellite data: an experiment in Peru shows texture at 3 m gives the best results
Selective logging is known to be widespread in the tropics, but is currently very poorly mapped, in part because there is little quantitative data on which satellite sensor characteristics and analysis methods are best at detecting it. To improve this, we used data from the Tropical Forest Degradation Experiment (FODEX) plots in the southern Peruvian Amazon, where different numbers of trees had been removed from four plots of 1 ha each, carefully inventoried by hand and terrestrial laser scanning before and after the logging to give a range of biomass loss (∆AGB) values. We conducted a comparative study of six multispectral optical satellite sensors at 0.3–30 m spatial resolution, to find the best combination of sensor and remote sensing indicator for change detection. Spectral reflectance, the normalised difference vegetation index (NDVI) and texture parameters were extracted after radiometric calibration and image preprocessing. The strength of the relationships between the change in these values and field‐measured ∆AGB (computed in % ha−1) was analysed. The results demonstrate that: (a) texture measures correlates more with ∆AGB than simple spectral parameters; (b) the strongest correlations are achieved for those sensors with spatial resolutions in the intermediate range (1.5–10 m), with finer or coarser resolutions producing worse results, and (c) when texture is computed using a moving square window ranging between 9 and 14 m in length. Maps predicting ∆AGB showed very promising results using a NIR‐derived texture parameter for 3 m resolution PlanetScope (R2 = 0.97 and root mean square error (RMSE) = 1.91% ha−1), followed by 1.5 m SPOT‐7 (R2 = 0.76 and RMSE = 5.06% ha−1) and 10 m Sentinel‐2 (R2 = 0.79 and RMSE = 4.77% ha−1). Our findings imply that, at least for lowland Peru, low‐medium intensity disturbance can be detected best in optical wavelengths using a texture measure derived from 3 m PlanetScope data.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.