Allyson N. X. Choi, Tanamas Siriphanitchakorn, Milly M. Choy, Justin S. G. Ooi, Menchie Manuel, Hwee Cheng Tan, Lowell Z. Lin, Xin Yap, Duane J. Gubler, Eng Eong Ooi
{"title":"prM突变可减轻登革病毒在人体细胞中的复制,从而增强蚊子的中肠感染。","authors":"Allyson N. X. Choi, Tanamas Siriphanitchakorn, Milly M. Choy, Justin S. G. Ooi, Menchie Manuel, Hwee Cheng Tan, Lowell Z. Lin, Xin Yap, Duane J. Gubler, Eng Eong Ooi","doi":"10.1126/scitranslmed.adk4769","DOIUrl":null,"url":null,"abstract":"<div >Dengue viruses (DENVs), like all viruses, evolve to perpetuate transmission of their species in their hosts. However, how DENV genetics influences dengue disease outbreaks remains poorly understood. Here, we examined isolates of the South Pacific dengue virus type 2 (DENV-2) that emerged in the 1970s and caused major dengue outbreaks in islands in this region until it reached Tonga, where only a few mild cases were reported. Phylogenetically, the DENV-2 strain isolated in Tonga segregated into a clade different from those clades infecting populations in other South Pacific islands. We found that this epidemiological observation could be explained by a single histidine-to-arginine substitution in position 86 of the premembrane (prM) protein of the Tonga DENV-2 strain. This mutation attenuated viral protein translation in mammalian cells but not in midgut cells of the mosquito vector <i>Aedes aegypti</i>. In mammalian cells, the prM mutation resulted in reduced translation of the viral genome and subsequent reduced virus replication. In contrast, in mosquito midgut cells, the prM mutation conferred a selective infection advantage, possibly because of the positively charged arginine residue introduced by the mutation. These findings provide molecular insights into the year-long silent transmission of attenuated DENV-2 in Tonga during the 1970s dengue outbreak in the South Pacific.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A prM mutation that attenuates dengue virus replication in human cells enhances midgut infection in mosquitoes\",\"authors\":\"Allyson N. X. Choi, Tanamas Siriphanitchakorn, Milly M. Choy, Justin S. G. Ooi, Menchie Manuel, Hwee Cheng Tan, Lowell Z. Lin, Xin Yap, Duane J. Gubler, Eng Eong Ooi\",\"doi\":\"10.1126/scitranslmed.adk4769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Dengue viruses (DENVs), like all viruses, evolve to perpetuate transmission of their species in their hosts. However, how DENV genetics influences dengue disease outbreaks remains poorly understood. Here, we examined isolates of the South Pacific dengue virus type 2 (DENV-2) that emerged in the 1970s and caused major dengue outbreaks in islands in this region until it reached Tonga, where only a few mild cases were reported. Phylogenetically, the DENV-2 strain isolated in Tonga segregated into a clade different from those clades infecting populations in other South Pacific islands. We found that this epidemiological observation could be explained by a single histidine-to-arginine substitution in position 86 of the premembrane (prM) protein of the Tonga DENV-2 strain. This mutation attenuated viral protein translation in mammalian cells but not in midgut cells of the mosquito vector <i>Aedes aegypti</i>. In mammalian cells, the prM mutation resulted in reduced translation of the viral genome and subsequent reduced virus replication. In contrast, in mosquito midgut cells, the prM mutation conferred a selective infection advantage, possibly because of the positively charged arginine residue introduced by the mutation. These findings provide molecular insights into the year-long silent transmission of attenuated DENV-2 in Tonga during the 1970s dengue outbreak in the South Pacific.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.adk4769\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adk4769","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A prM mutation that attenuates dengue virus replication in human cells enhances midgut infection in mosquitoes
Dengue viruses (DENVs), like all viruses, evolve to perpetuate transmission of their species in their hosts. However, how DENV genetics influences dengue disease outbreaks remains poorly understood. Here, we examined isolates of the South Pacific dengue virus type 2 (DENV-2) that emerged in the 1970s and caused major dengue outbreaks in islands in this region until it reached Tonga, where only a few mild cases were reported. Phylogenetically, the DENV-2 strain isolated in Tonga segregated into a clade different from those clades infecting populations in other South Pacific islands. We found that this epidemiological observation could be explained by a single histidine-to-arginine substitution in position 86 of the premembrane (prM) protein of the Tonga DENV-2 strain. This mutation attenuated viral protein translation in mammalian cells but not in midgut cells of the mosquito vector Aedes aegypti. In mammalian cells, the prM mutation resulted in reduced translation of the viral genome and subsequent reduced virus replication. In contrast, in mosquito midgut cells, the prM mutation conferred a selective infection advantage, possibly because of the positively charged arginine residue introduced by the mutation. These findings provide molecular insights into the year-long silent transmission of attenuated DENV-2 in Tonga during the 1970s dengue outbreak in the South Pacific.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.