{"title":"温度对新西兰市场上奶油的流变、质地和感官特性的影响。","authors":"X. Yang, A. Saunders, M. S. Mohan","doi":"10.1111/jtxs.12859","DOIUrl":null,"url":null,"abstract":"<p>Texture and sensory studies at various temperatures are important in evaluating and improving the functionality of butter. While literature is scarce, we evaluated and compared the effect of temperature (5–25°C) on the texture, rheological and sensory properties of commercial butter samples (salted, unsalted, cultured, and spreadable) from the New Zealand market. In addition, the instrumental analyses were compared with the sensory evaluation, to understand the possibility of using instrumental analysis to evaluate consumer liking for different butters. Butter type, temperature, and their type–temperature interaction exhibited significant differences for all instrumental textural parameters. As expected, higher temperature produced softer butter that was more spreadable, liquid-like, less adhesive, less cohesive, had lower storage modulus (<i>G</i>′) and lower loss modulus (<i>G</i>″) with the melting of milk fat crystals; however, the rate of change varied for the different butter samples. We have established meltability as the parameter for evaluating butter selection for different applications. The spreadable butter sample exhibited the lowest hardness and <i>G</i>′, and highest spreadability (<i>p</i> < .05) at all temperatures, owing to its low solid fat content and the abundance of low-melting triglycerides. The cultured butter sample had the highest melting point, owing to compositional differences. The instrumental and sensory texture analyses were highly correlated, indicating the comparative effectiveness of both approaches for studying the effects of different temperatures on butter textural properties. Overall, our findings provide detailed reference to the dairy industry for butter manufacture, considering variation in fatty acid composition, texture analysis, rheology, and sensory analysis, over the range of storage/usage temperatures.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of temperature on the rheological, textural, and sensory properties of butters from New Zealand market\",\"authors\":\"X. Yang, A. Saunders, M. S. Mohan\",\"doi\":\"10.1111/jtxs.12859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Texture and sensory studies at various temperatures are important in evaluating and improving the functionality of butter. While literature is scarce, we evaluated and compared the effect of temperature (5–25°C) on the texture, rheological and sensory properties of commercial butter samples (salted, unsalted, cultured, and spreadable) from the New Zealand market. In addition, the instrumental analyses were compared with the sensory evaluation, to understand the possibility of using instrumental analysis to evaluate consumer liking for different butters. Butter type, temperature, and their type–temperature interaction exhibited significant differences for all instrumental textural parameters. As expected, higher temperature produced softer butter that was more spreadable, liquid-like, less adhesive, less cohesive, had lower storage modulus (<i>G</i>′) and lower loss modulus (<i>G</i>″) with the melting of milk fat crystals; however, the rate of change varied for the different butter samples. We have established meltability as the parameter for evaluating butter selection for different applications. The spreadable butter sample exhibited the lowest hardness and <i>G</i>′, and highest spreadability (<i>p</i> < .05) at all temperatures, owing to its low solid fat content and the abundance of low-melting triglycerides. The cultured butter sample had the highest melting point, owing to compositional differences. The instrumental and sensory texture analyses were highly correlated, indicating the comparative effectiveness of both approaches for studying the effects of different temperatures on butter textural properties. Overall, our findings provide detailed reference to the dairy industry for butter manufacture, considering variation in fatty acid composition, texture analysis, rheology, and sensory analysis, over the range of storage/usage temperatures.</p>\",\"PeriodicalId\":17175,\"journal\":{\"name\":\"Journal of texture studies\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of texture studies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12859\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12859","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effect of temperature on the rheological, textural, and sensory properties of butters from New Zealand market
Texture and sensory studies at various temperatures are important in evaluating and improving the functionality of butter. While literature is scarce, we evaluated and compared the effect of temperature (5–25°C) on the texture, rheological and sensory properties of commercial butter samples (salted, unsalted, cultured, and spreadable) from the New Zealand market. In addition, the instrumental analyses were compared with the sensory evaluation, to understand the possibility of using instrumental analysis to evaluate consumer liking for different butters. Butter type, temperature, and their type–temperature interaction exhibited significant differences for all instrumental textural parameters. As expected, higher temperature produced softer butter that was more spreadable, liquid-like, less adhesive, less cohesive, had lower storage modulus (G′) and lower loss modulus (G″) with the melting of milk fat crystals; however, the rate of change varied for the different butter samples. We have established meltability as the parameter for evaluating butter selection for different applications. The spreadable butter sample exhibited the lowest hardness and G′, and highest spreadability (p < .05) at all temperatures, owing to its low solid fat content and the abundance of low-melting triglycerides. The cultured butter sample had the highest melting point, owing to compositional differences. The instrumental and sensory texture analyses were highly correlated, indicating the comparative effectiveness of both approaches for studying the effects of different temperatures on butter textural properties. Overall, our findings provide detailed reference to the dairy industry for butter manufacture, considering variation in fatty acid composition, texture analysis, rheology, and sensory analysis, over the range of storage/usage temperatures.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing