在急性缺氧时,丹瑞鱼组织的哪些部位会产生更多的 H2O2?

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anastasia D Sergeeva, Anastasiya S Panova, Alexandra D Ivanova, Yulia V Khramova, Ksenia I Morozova, Daria A Kotova, Anastasia V Guryleva, Demid D Khokhlov, Ilya V Kelmanson, Aleksandr V Vasilev, Alexander I Kostyuk, Alexey V Semyanov, Vladimir A Oleinikov, Vsevolod V Belousov, Alexander S Machikhin, Nadezda A Brazhe, Dmitry S Bilan
{"title":"在急性缺氧时,丹瑞鱼组织的哪些部位会产生更多的 H2O2?","authors":"Anastasia D Sergeeva, Anastasiya S Panova, Alexandra D Ivanova, Yulia V Khramova, Ksenia I Morozova, Daria A Kotova, Anastasia V Guryleva, Demid D Khokhlov, Ilya V Kelmanson, Aleksandr V Vasilev, Alexander I Kostyuk, Alexey V Semyanov, Vladimir A Oleinikov, Vsevolod V Belousov, Alexander S Machikhin, Nadezda A Brazhe, Dmitry S Bilan","doi":"10.1089/ars.2024.0563","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of oxygen (O2) causes changes in the cell functioning. Modeling hypoxic conditions in vitro is challenging given that different cell types exhibit different sensitivities to tissue O2 levels. We present an effective in vivo platform for assessing various tissue and organ parameters in Danio rerio larvae under acute hypoxic conditions. Our system allows simultaneous positioning of multiple individuals within a chamber where O2 level in the water can be precisely and promptly regulated, all while conducting microscopy. We applied this approach in combination with a genetically encoded pH-biosensor SypHer3s and a highly H2O2-sensitive Hyper7 biosensor. Hypoxia causes H2O2 production in areas of brain, heart and skeletal muscles, exclusively in the mitochondrial matrix; it is noteworthy that H2O2 does not penetrate into the cytosol and is neutralized in the matrix upon reoxygenation. Hypoxia causes pronounced tissue acidosis, expressed by a decrease in pH by 0.4-0.6 units everywhere. Using imaging photoplethysmography, we measured in D.rerio fry real-time heart rate decrease under conditions of hypoxia and subsequent reoxygenation. Our observations in this experimental system lead to the hypothesis that mitochondria are the only source of H2O2 in cells of D.rerio under hypoxia.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Where in the tissues of Danio rerio is more H2O2 produced during acute hypoxia?\",\"authors\":\"Anastasia D Sergeeva, Anastasiya S Panova, Alexandra D Ivanova, Yulia V Khramova, Ksenia I Morozova, Daria A Kotova, Anastasia V Guryleva, Demid D Khokhlov, Ilya V Kelmanson, Aleksandr V Vasilev, Alexander I Kostyuk, Alexey V Semyanov, Vladimir A Oleinikov, Vsevolod V Belousov, Alexander S Machikhin, Nadezda A Brazhe, Dmitry S Bilan\",\"doi\":\"10.1089/ars.2024.0563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lack of oxygen (O2) causes changes in the cell functioning. Modeling hypoxic conditions in vitro is challenging given that different cell types exhibit different sensitivities to tissue O2 levels. We present an effective in vivo platform for assessing various tissue and organ parameters in Danio rerio larvae under acute hypoxic conditions. Our system allows simultaneous positioning of multiple individuals within a chamber where O2 level in the water can be precisely and promptly regulated, all while conducting microscopy. We applied this approach in combination with a genetically encoded pH-biosensor SypHer3s and a highly H2O2-sensitive Hyper7 biosensor. Hypoxia causes H2O2 production in areas of brain, heart and skeletal muscles, exclusively in the mitochondrial matrix; it is noteworthy that H2O2 does not penetrate into the cytosol and is neutralized in the matrix upon reoxygenation. Hypoxia causes pronounced tissue acidosis, expressed by a decrease in pH by 0.4-0.6 units everywhere. Using imaging photoplethysmography, we measured in D.rerio fry real-time heart rate decrease under conditions of hypoxia and subsequent reoxygenation. Our observations in this experimental system lead to the hypothesis that mitochondria are the only source of H2O2 in cells of D.rerio under hypoxia.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2024.0563\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0563","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

缺氧(O2)会导致细胞功能发生变化。由于不同类型的细胞对组织氧气水平表现出不同的敏感性,因此在体外模拟缺氧条件具有挑战性。我们提出了一种有效的体内平台,用于评估急性缺氧条件下丹利欧幼体的各种组织和器官参数。我们的系统可将多个个体同时定位在一个可精确、及时调节水中氧气水平的舱内,同时进行显微镜检查。我们将这种方法与基因编码的 pH 生物传感器 SypHer3s 和对 H2O2 高度敏感的 Hyper7 生物传感器结合使用。缺氧会导致大脑、心脏和骨骼肌等部位产生 H2O2,而且只在线粒体基质中产生;值得注意的是,H2O2 不会渗入细胞膜,而是在基质中被中和。缺氧会导致明显的组织酸中毒,表现为各处的 pH 值下降 0.4-0.6 个单位。我们利用成像光电血压计,测量了在缺氧和随后复氧条件下,D.rerio鱼苗的实时心率下降情况。我们在这一实验系统中的观察结果提出了一个假设,即线粒体是缺氧条件下黑线梭鱼细胞中 H2O2 的唯一来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Where in the tissues of Danio rerio is more H2O2 produced during acute hypoxia?

The lack of oxygen (O2) causes changes in the cell functioning. Modeling hypoxic conditions in vitro is challenging given that different cell types exhibit different sensitivities to tissue O2 levels. We present an effective in vivo platform for assessing various tissue and organ parameters in Danio rerio larvae under acute hypoxic conditions. Our system allows simultaneous positioning of multiple individuals within a chamber where O2 level in the water can be precisely and promptly regulated, all while conducting microscopy. We applied this approach in combination with a genetically encoded pH-biosensor SypHer3s and a highly H2O2-sensitive Hyper7 biosensor. Hypoxia causes H2O2 production in areas of brain, heart and skeletal muscles, exclusively in the mitochondrial matrix; it is noteworthy that H2O2 does not penetrate into the cytosol and is neutralized in the matrix upon reoxygenation. Hypoxia causes pronounced tissue acidosis, expressed by a decrease in pH by 0.4-0.6 units everywhere. Using imaging photoplethysmography, we measured in D.rerio fry real-time heart rate decrease under conditions of hypoxia and subsequent reoxygenation. Our observations in this experimental system lead to the hypothesis that mitochondria are the only source of H2O2 in cells of D.rerio under hypoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信