有两个竞争代理的双机无等待流动车间调度问题的算法

Pub Date : 2024-07-30 DOI:10.1007/s10878-024-01198-8
Qi-Xia Yang, Long-Cheng Liu, Min Huang, Tian-Run Wang
{"title":"有两个竞争代理的双机无等待流动车间调度问题的算法","authors":"Qi-Xia Yang, Long-Cheng Liu, Min Huang, Tian-Run Wang","doi":"10.1007/s10878-024-01198-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following two-machine no-wait flow shop scheduling problem with two competing agents <span>\\(F2~|~M_1\\rightarrow M_2,~ M_2,~ p_{ij}^{A} = p,~ no\\text{- }wait~|~C_{\\max }^A:~ C_{\\max }^B~\\le Q \\)</span>: Given a set of <i>n</i> jobs <span>\\(\\mathcal {J} = \\{ J_1, J_2, \\ldots , J_n\\}\\)</span> and two competing agents <i>A</i> and <i>B</i>. Agent <i>A</i> is associated with a set of <span>\\(n_A\\)</span> jobs <span>\\(\\mathcal {J}^A = \\{J_1^A, J_2^A, \\ldots , J_{n_A}^A\\}\\)</span> to be processed on the machine <span>\\(M_1\\)</span> first and then on the machine <span>\\(M_2\\)</span> with no-wait constraint, and agent <i>B</i> is associated with a set of <span>\\(n_B\\)</span> jobs <span>\\(\\mathcal {J}^B = \\{J_1^B, J_2^B, \\ldots , J_{n_B}^B\\}\\)</span> to be processed on the machine <span>\\(M_2\\)</span> only, where the processing times for the jobs of agent <i>A</i> are all the same (i.e., <span>\\(p_{ij}^A = p\\)</span>), <span>\\(\\mathcal {J} = \\mathcal {J}^A \\cup \\mathcal {J}^B\\)</span> and <span>\\(n = n_A + n_B\\)</span>. The objective is to build a schedule <span>\\(\\pi \\)</span> of the <i>n</i> jobs that minimizing the makespan of agent <i>A</i> while maintaining the makespan of agent <i>B</i> not greater than a given value <i>Q</i>. We first show that the problem is polynomial time solvable in some special cases. For the non-solvable case, we present an <span>\\(O(n \\log n)\\)</span>-time <span>\\((1 + \\frac{1}{n_A +1})\\)</span>-approximation algorithm and show that this ratio of <span>\\((1 + \\frac{1}{n_A +1})\\)</span> is asymptotically tight. Finally, <span>\\((1+\\epsilon )\\)</span>-approximation algorithms are provided.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for a two-machine no-wait flow shop scheduling problem with two competing agents\",\"authors\":\"Qi-Xia Yang, Long-Cheng Liu, Min Huang, Tian-Run Wang\",\"doi\":\"10.1007/s10878-024-01198-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the following two-machine no-wait flow shop scheduling problem with two competing agents <span>\\\\(F2~|~M_1\\\\rightarrow M_2,~ M_2,~ p_{ij}^{A} = p,~ no\\\\text{- }wait~|~C_{\\\\max }^A:~ C_{\\\\max }^B~\\\\le Q \\\\)</span>: Given a set of <i>n</i> jobs <span>\\\\(\\\\mathcal {J} = \\\\{ J_1, J_2, \\\\ldots , J_n\\\\}\\\\)</span> and two competing agents <i>A</i> and <i>B</i>. Agent <i>A</i> is associated with a set of <span>\\\\(n_A\\\\)</span> jobs <span>\\\\(\\\\mathcal {J}^A = \\\\{J_1^A, J_2^A, \\\\ldots , J_{n_A}^A\\\\}\\\\)</span> to be processed on the machine <span>\\\\(M_1\\\\)</span> first and then on the machine <span>\\\\(M_2\\\\)</span> with no-wait constraint, and agent <i>B</i> is associated with a set of <span>\\\\(n_B\\\\)</span> jobs <span>\\\\(\\\\mathcal {J}^B = \\\\{J_1^B, J_2^B, \\\\ldots , J_{n_B}^B\\\\}\\\\)</span> to be processed on the machine <span>\\\\(M_2\\\\)</span> only, where the processing times for the jobs of agent <i>A</i> are all the same (i.e., <span>\\\\(p_{ij}^A = p\\\\)</span>), <span>\\\\(\\\\mathcal {J} = \\\\mathcal {J}^A \\\\cup \\\\mathcal {J}^B\\\\)</span> and <span>\\\\(n = n_A + n_B\\\\)</span>. The objective is to build a schedule <span>\\\\(\\\\pi \\\\)</span> of the <i>n</i> jobs that minimizing the makespan of agent <i>A</i> while maintaining the makespan of agent <i>B</i> not greater than a given value <i>Q</i>. We first show that the problem is polynomial time solvable in some special cases. For the non-solvable case, we present an <span>\\\\(O(n \\\\log n)\\\\)</span>-time <span>\\\\((1 + \\\\frac{1}{n_A +1})\\\\)</span>-approximation algorithm and show that this ratio of <span>\\\\((1 + \\\\frac{1}{n_A +1})\\\\)</span> is asymptotically tight. Finally, <span>\\\\((1+\\\\epsilon )\\\\)</span>-approximation algorithms are provided.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01198-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01198-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑以下具有两个竞争代理的双机无等待流车间调度问题(F2~|~M_1/rightarrow M_2,~ M_2,~ p_{ij}^{A} = p,~ no\text{- }wait~|~C_{\max }^A:~ C_{\max }^B~\le Q \):给定一组 n 个工作(mathcal {J} = \{ J_1, J_2, \ldots , J_n\}\)和两个相互竞争的代理 A 和 B。代理 A 与一组 \(n_A\) 工作相关联 \(\mathcal {J}^A = \{J_1^A, J_2^A, \ldots , J_{n_A}^A\}) 先在机器 \(M_1\) 上处理,然后在机器 \(M_2\) 上处理,并且没有等待约束、代理 B 与一组 \(n_B\) 工作相关联 \(\mathcal {J}^B = \{J_1^B, J_2^B, \ldots , J_{n_B}^B\}) 只在机器 \(M_2\)上处理,其中代理 A 的工作的处理时间都是一样的(即e.,\(p_{ij}^A = p\)),\(\mathcal {J} = \mathcal {J}^A \cup \mathcal {J}^B\) and\(n = n_A + n_B\).我们的目标是为这 n 个任务制定一个时间表(\pi \),使代理 A 的工作时间最小化,同时保持代理 B 的工作时间不大于给定值 Q。我们首先证明,在某些特殊情况下,这个问题是多项式时间可解的。对于不可解的情况,我们提出了一个 \(O(n \log n)\)-时间 \((1+\frac{1}{n_A +1})\)-逼近算法,并证明了这个比率 \((1+\frac{1}{n_A +1})\)是渐近紧密的。最后,还提供了 \((1+\epsilon )\) - 近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Algorithms for a two-machine no-wait flow shop scheduling problem with two competing agents

分享
查看原文
Algorithms for a two-machine no-wait flow shop scheduling problem with two competing agents

In this paper, we consider the following two-machine no-wait flow shop scheduling problem with two competing agents \(F2~|~M_1\rightarrow M_2,~ M_2,~ p_{ij}^{A} = p,~ no\text{- }wait~|~C_{\max }^A:~ C_{\max }^B~\le Q \): Given a set of n jobs \(\mathcal {J} = \{ J_1, J_2, \ldots , J_n\}\) and two competing agents A and B. Agent A is associated with a set of \(n_A\) jobs \(\mathcal {J}^A = \{J_1^A, J_2^A, \ldots , J_{n_A}^A\}\) to be processed on the machine \(M_1\) first and then on the machine \(M_2\) with no-wait constraint, and agent B is associated with a set of \(n_B\) jobs \(\mathcal {J}^B = \{J_1^B, J_2^B, \ldots , J_{n_B}^B\}\) to be processed on the machine \(M_2\) only, where the processing times for the jobs of agent A are all the same (i.e., \(p_{ij}^A = p\)), \(\mathcal {J} = \mathcal {J}^A \cup \mathcal {J}^B\) and \(n = n_A + n_B\). The objective is to build a schedule \(\pi \) of the n jobs that minimizing the makespan of agent A while maintaining the makespan of agent B not greater than a given value Q. We first show that the problem is polynomial time solvable in some special cases. For the non-solvable case, we present an \(O(n \log n)\)-time \((1 + \frac{1}{n_A +1})\)-approximation algorithm and show that this ratio of \((1 + \frac{1}{n_A +1})\) is asymptotically tight. Finally, \((1+\epsilon )\)-approximation algorithms are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信