{"title":"利用 Twitter 帖子跟踪人口普查在线自我填写情况","authors":"Mao Li, Frederick Conrad","doi":"10.1177/08944393241268461","DOIUrl":null,"url":null,"abstract":"From the start of data collection for the 2020 US Census, official and celebrity users tweeted about the importance of everyone being counted in the Census and urged followers to complete the questionnaire (so-called social media campaign.) At the same time, social media posts expressing skepticism about the Census became increasingly common. This study distinguishes between different prototypical Twitter user groups and investigates their possible impact on (online) self-completion rate for the 2020 Census, according to Census Bureau data. Using a network analysis method, Community Detection, and a clustering algorithm, Latent Dirichlet Allocation (LDA), three prototypical user groups were identified: “Official Government Agency,” “Census Advocate,” and “Census Skeptic.” The prototypical Census Skeptic user was motivated by events about which an influential person had tweeted (e.g., “Republicans in Congress signal Census cannot take extra time to count”). This group became the largest one over the study period. The prototypical Census Advocate was motivated more by official tweets and was more active than the prototypical Census Skeptic. The Official Government Agency user group was the smallest of the three, but their messages—primarily promoting completion of the Census—seemed to have been amplified by Census Advocate, especially celebrities and politicians. We found that the daily size of the Census Advocate user group—but not the other two—predicted the 2020 Census online self-completion rate within five days after a tweet was posted. This finding suggests that the Census social media campaign was successful in promoting completion, apparently due to the help of Census Advocate users who encouraged people to fill out the Census and amplified official tweets. This finding demonstrates that a social media campaign can positively affect public behavior regarding an essential national project like the Decennial Census.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"81 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Census Online Self-Completion Using Twitter Posts\",\"authors\":\"Mao Li, Frederick Conrad\",\"doi\":\"10.1177/08944393241268461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the start of data collection for the 2020 US Census, official and celebrity users tweeted about the importance of everyone being counted in the Census and urged followers to complete the questionnaire (so-called social media campaign.) At the same time, social media posts expressing skepticism about the Census became increasingly common. This study distinguishes between different prototypical Twitter user groups and investigates their possible impact on (online) self-completion rate for the 2020 Census, according to Census Bureau data. Using a network analysis method, Community Detection, and a clustering algorithm, Latent Dirichlet Allocation (LDA), three prototypical user groups were identified: “Official Government Agency,” “Census Advocate,” and “Census Skeptic.” The prototypical Census Skeptic user was motivated by events about which an influential person had tweeted (e.g., “Republicans in Congress signal Census cannot take extra time to count”). This group became the largest one over the study period. The prototypical Census Advocate was motivated more by official tweets and was more active than the prototypical Census Skeptic. The Official Government Agency user group was the smallest of the three, but their messages—primarily promoting completion of the Census—seemed to have been amplified by Census Advocate, especially celebrities and politicians. We found that the daily size of the Census Advocate user group—but not the other two—predicted the 2020 Census online self-completion rate within five days after a tweet was posted. This finding suggests that the Census social media campaign was successful in promoting completion, apparently due to the help of Census Advocate users who encouraged people to fill out the Census and amplified official tweets. This finding demonstrates that a social media campaign can positively affect public behavior regarding an essential national project like the Decennial Census.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393241268461\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393241268461","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Tracking Census Online Self-Completion Using Twitter Posts
From the start of data collection for the 2020 US Census, official and celebrity users tweeted about the importance of everyone being counted in the Census and urged followers to complete the questionnaire (so-called social media campaign.) At the same time, social media posts expressing skepticism about the Census became increasingly common. This study distinguishes between different prototypical Twitter user groups and investigates their possible impact on (online) self-completion rate for the 2020 Census, according to Census Bureau data. Using a network analysis method, Community Detection, and a clustering algorithm, Latent Dirichlet Allocation (LDA), three prototypical user groups were identified: “Official Government Agency,” “Census Advocate,” and “Census Skeptic.” The prototypical Census Skeptic user was motivated by events about which an influential person had tweeted (e.g., “Republicans in Congress signal Census cannot take extra time to count”). This group became the largest one over the study period. The prototypical Census Advocate was motivated more by official tweets and was more active than the prototypical Census Skeptic. The Official Government Agency user group was the smallest of the three, but their messages—primarily promoting completion of the Census—seemed to have been amplified by Census Advocate, especially celebrities and politicians. We found that the daily size of the Census Advocate user group—but not the other two—predicted the 2020 Census online self-completion rate within five days after a tweet was posted. This finding suggests that the Census social media campaign was successful in promoting completion, apparently due to the help of Census Advocate users who encouraged people to fill out the Census and amplified official tweets. This finding demonstrates that a social media campaign can positively affect public behavior regarding an essential national project like the Decennial Census.
期刊介绍:
Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.