Zakaria El Hathat, V. G. Venkatesh, V. Raja Sreedharan, Tarik Zouadi, Arunmozhi Manimuthu, Yangyan Shi, S. Srivatsa Srinivas
{"title":"利用落花生供应链中的温室气体排放可追溯性:区块链支持的链外机器学习推动可持续性发展","authors":"Zakaria El Hathat, V. G. Venkatesh, V. Raja Sreedharan, Tarik Zouadi, Arunmozhi Manimuthu, Yangyan Shi, S. Srivatsa Srinivas","doi":"10.1007/s10796-024-10514-w","DOIUrl":null,"url":null,"abstract":"<p>As emphasized in multiple United Nations (UN) reports, sustainable agriculture, a key goal in the UN Sustainable Development Goals (SDGs), calls for dedicated efforts and innovative solutions. In this study, greenhouse gas (GHG) emissions in the groundnut supply chain from the region of Diourbel & Niakhar, Senegal, to the port of Dakar are investigated. The groundnut supply chain is divided into three steps: cultivation, harvesting, and processing/shipping. This work adheres to UN guidelines, addressing the imperative for sustainable agriculture by applying machine learning-based predictive modeling (MLPMs) utilizing the FAOSTAT and EDGAR databases. Additionally, it provides a novel approach using blockchain-enabled off-chain machine learning through smart contracts built on Hyperledger Fabric to secure GHG emissions storage and machine learning’s predictive analytics from fraud and enhance transparency and data security. This study also develops a decision-making dashboard to provide actionable insights for GHG emissions reduction strategies across the groundnut supply chain.</p>","PeriodicalId":13610,"journal":{"name":"Information Systems Frontiers","volume":"18 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Greenhouse Gas Emissions Traceability in the Groundnut Supply Chain: Blockchain-Enabled Off-Chain Machine Learning as a Driver of Sustainability\",\"authors\":\"Zakaria El Hathat, V. G. Venkatesh, V. Raja Sreedharan, Tarik Zouadi, Arunmozhi Manimuthu, Yangyan Shi, S. Srivatsa Srinivas\",\"doi\":\"10.1007/s10796-024-10514-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As emphasized in multiple United Nations (UN) reports, sustainable agriculture, a key goal in the UN Sustainable Development Goals (SDGs), calls for dedicated efforts and innovative solutions. In this study, greenhouse gas (GHG) emissions in the groundnut supply chain from the region of Diourbel & Niakhar, Senegal, to the port of Dakar are investigated. The groundnut supply chain is divided into three steps: cultivation, harvesting, and processing/shipping. This work adheres to UN guidelines, addressing the imperative for sustainable agriculture by applying machine learning-based predictive modeling (MLPMs) utilizing the FAOSTAT and EDGAR databases. Additionally, it provides a novel approach using blockchain-enabled off-chain machine learning through smart contracts built on Hyperledger Fabric to secure GHG emissions storage and machine learning’s predictive analytics from fraud and enhance transparency and data security. This study also develops a decision-making dashboard to provide actionable insights for GHG emissions reduction strategies across the groundnut supply chain.</p>\",\"PeriodicalId\":13610,\"journal\":{\"name\":\"Information Systems Frontiers\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Frontiers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10796-024-10514-w\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Frontiers","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10796-024-10514-w","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Leveraging Greenhouse Gas Emissions Traceability in the Groundnut Supply Chain: Blockchain-Enabled Off-Chain Machine Learning as a Driver of Sustainability
As emphasized in multiple United Nations (UN) reports, sustainable agriculture, a key goal in the UN Sustainable Development Goals (SDGs), calls for dedicated efforts and innovative solutions. In this study, greenhouse gas (GHG) emissions in the groundnut supply chain from the region of Diourbel & Niakhar, Senegal, to the port of Dakar are investigated. The groundnut supply chain is divided into three steps: cultivation, harvesting, and processing/shipping. This work adheres to UN guidelines, addressing the imperative for sustainable agriculture by applying machine learning-based predictive modeling (MLPMs) utilizing the FAOSTAT and EDGAR databases. Additionally, it provides a novel approach using blockchain-enabled off-chain machine learning through smart contracts built on Hyperledger Fabric to secure GHG emissions storage and machine learning’s predictive analytics from fraud and enhance transparency and data security. This study also develops a decision-making dashboard to provide actionable insights for GHG emissions reduction strategies across the groundnut supply chain.
期刊介绍:
The interdisciplinary interfaces of Information Systems (IS) are fast emerging as defining areas of research and development in IS. These developments are largely due to the transformation of Information Technology (IT) towards networked worlds and its effects on global communications and economies. While these developments are shaping the way information is used in all forms of human enterprise, they are also setting the tone and pace of information systems of the future. The major advances in IT such as client/server systems, the Internet and the desktop/multimedia computing revolution, for example, have led to numerous important vistas of research and development with considerable practical impact and academic significance. While the industry seeks to develop high performance IS/IT solutions to a variety of contemporary information support needs, academia looks to extend the reach of IS technology into new application domains. Information Systems Frontiers (ISF) aims to provide a common forum of dissemination of frontline industrial developments of substantial academic value and pioneering academic research of significant practical impact.