Ingrid Calvez, Rosilei Garcia, Ahmed Koubaa, Véronic Landry, Alain Cloutier
{"title":"用于人造板生产的生物基粘合剂和无甲醛技术的最新进展","authors":"Ingrid Calvez, Rosilei Garcia, Ahmed Koubaa, Véronic Landry, Alain Cloutier","doi":"10.1007/s40725-024-00227-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>Conventional formaldehyde-based adhesives for wood-based composite panels are subject to significant concerns due to their formaldehyde emissions. Over the past decade, the wood adhesive industry has undergone a considerable transformation that is characterized by a major push in bio-adhesive development. Various bio-based materials have been explored to create alternatives to conventional formaldehyde-based adhesives. Moreover, growing interest in circularity has led to increasingly exploiting industrial coproducts and by-products to find innovative solutions.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>Industrial production generates many coproducts that can serve as renewable resources to produce eco-friendly materials. These coproducts offer alternative supply sources for material production without encroaching on food production. Many bio-based compounds or coproducts, such as saccharides, proteins, tannins, and lignocellulosic biomass, can also be used to develop bio-based adhesives. As part of ongoing efforts to reduce formaldehyde emissions, new hardeners and crosslinkers are being developed to replace formaldehyde and bio-scavengers. Other alternatives, such as binderless panels, are also emerging.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>This review focuses on sources of bio-based material derived from by-products of various industries, which have many advantages and disadvantages when incorporated into adhesives. Modification methods to enhance their properties and performance in wood-based panels are also discussed. Additionally, alternatives for developing low-emission or formaldehyde-free adhesives are addressed, including hardeners, bio-scavengers, and binderless options. Finally, the environmental impact of bio-based adhesives compared to that of synthetic alternatives is detailed.</p>","PeriodicalId":48653,"journal":{"name":"Current Forestry Reports","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Bio-Based Adhesives and Formaldehyde-Free Technologies for Wood-Based Panel Manufacturing\",\"authors\":\"Ingrid Calvez, Rosilei Garcia, Ahmed Koubaa, Véronic Landry, Alain Cloutier\",\"doi\":\"10.1007/s40725-024-00227-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose of Review</h3><p>Conventional formaldehyde-based adhesives for wood-based composite panels are subject to significant concerns due to their formaldehyde emissions. Over the past decade, the wood adhesive industry has undergone a considerable transformation that is characterized by a major push in bio-adhesive development. Various bio-based materials have been explored to create alternatives to conventional formaldehyde-based adhesives. Moreover, growing interest in circularity has led to increasingly exploiting industrial coproducts and by-products to find innovative solutions.</p><h3 data-test=\\\"abstract-sub-heading\\\">Recent Findings</h3><p>Industrial production generates many coproducts that can serve as renewable resources to produce eco-friendly materials. These coproducts offer alternative supply sources for material production without encroaching on food production. Many bio-based compounds or coproducts, such as saccharides, proteins, tannins, and lignocellulosic biomass, can also be used to develop bio-based adhesives. As part of ongoing efforts to reduce formaldehyde emissions, new hardeners and crosslinkers are being developed to replace formaldehyde and bio-scavengers. Other alternatives, such as binderless panels, are also emerging.</p><h3 data-test=\\\"abstract-sub-heading\\\">Summary</h3><p>This review focuses on sources of bio-based material derived from by-products of various industries, which have many advantages and disadvantages when incorporated into adhesives. Modification methods to enhance their properties and performance in wood-based panels are also discussed. Additionally, alternatives for developing low-emission or formaldehyde-free adhesives are addressed, including hardeners, bio-scavengers, and binderless options. Finally, the environmental impact of bio-based adhesives compared to that of synthetic alternatives is detailed.</p>\",\"PeriodicalId\":48653,\"journal\":{\"name\":\"Current Forestry Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Forestry Reports\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s40725-024-00227-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Forestry Reports","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s40725-024-00227-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Recent Advances in Bio-Based Adhesives and Formaldehyde-Free Technologies for Wood-Based Panel Manufacturing
Purpose of Review
Conventional formaldehyde-based adhesives for wood-based composite panels are subject to significant concerns due to their formaldehyde emissions. Over the past decade, the wood adhesive industry has undergone a considerable transformation that is characterized by a major push in bio-adhesive development. Various bio-based materials have been explored to create alternatives to conventional formaldehyde-based adhesives. Moreover, growing interest in circularity has led to increasingly exploiting industrial coproducts and by-products to find innovative solutions.
Recent Findings
Industrial production generates many coproducts that can serve as renewable resources to produce eco-friendly materials. These coproducts offer alternative supply sources for material production without encroaching on food production. Many bio-based compounds or coproducts, such as saccharides, proteins, tannins, and lignocellulosic biomass, can also be used to develop bio-based adhesives. As part of ongoing efforts to reduce formaldehyde emissions, new hardeners and crosslinkers are being developed to replace formaldehyde and bio-scavengers. Other alternatives, such as binderless panels, are also emerging.
Summary
This review focuses on sources of bio-based material derived from by-products of various industries, which have many advantages and disadvantages when incorporated into adhesives. Modification methods to enhance their properties and performance in wood-based panels are also discussed. Additionally, alternatives for developing low-emission or formaldehyde-free adhesives are addressed, including hardeners, bio-scavengers, and binderless options. Finally, the environmental impact of bio-based adhesives compared to that of synthetic alternatives is detailed.
Current Forestry ReportsAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
15.90
自引率
2.10%
发文量
22
期刊介绍:
Current Forestry Reports features in-depth review articles written by global experts on significant advancements in forestry. Its goal is to provide clear, insightful, and balanced contributions that highlight and summarize important topics for forestry researchers and managers.
To achieve this, the journal appoints international authorities as Section Editors in various key subject areas like physiological processes, tree genetics, forest management, remote sensing, and wood structure and function. These Section Editors select topics for which leading experts contribute comprehensive review articles that focus on new developments and recently published papers of great importance. Moreover, an international Editorial Board evaluates the yearly table of contents, suggests articles of special interest to their specific country or region, and ensures that the topics are up-to-date and include emerging research.