Qianyu Liu, Chaojie Yang, Sen Yang, Chiew Foong Kwong, Jing Wang, Ning Zhou
{"title":"通过集合模型和不平衡数据集处理实现基于照相血压计的无创血压监测。","authors":"Qianyu Liu, Chaojie Yang, Sen Yang, Chiew Foong Kwong, Jing Wang, Ning Zhou","doi":"10.1007/s13246-024-01445-6","DOIUrl":null,"url":null,"abstract":"<p><p>Photoplethysmography, a widely embraced tool for non-invasive blood pressure (BP) monitoring, has demonstrated potential in BP prediction, especially when machine learning techniques are involved. However, predictions with a singular model often fall short in terms of accuracy. In order to counter this issue, we propose an innovative ensemble model that utilizes Light Gradient Boosting Machine (LightGBM) as the base estimator for predicting systolic and diastolic BP. This study included 115 women and 104 men, with experimental results indicating mean absolute errors of 5.63 mmHg and 9.36 mmHg for diastolic and systolic BP, in line with level B and C standards set by the British Hypertension Society. Additionally, our research confronts data imbalance in medical research which can detrimentally affect classification. Here we demonstrate an effective use for the Synthetic Minority Over-sampling Technique (SMOTE) with three nearest neighbors for handling moderate imbalanced datasets. The application of this method outperformed other methods in the field, achieving an F1 score of 81.6% and an AUC value of 0.895, emphasizing the potential value of SMOTE for addressing imbalanced datasets in medical research.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1307-1321"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photoplethysmography-based non-invasive blood pressure monitoring via ensemble model and imbalanced dataset processing.\",\"authors\":\"Qianyu Liu, Chaojie Yang, Sen Yang, Chiew Foong Kwong, Jing Wang, Ning Zhou\",\"doi\":\"10.1007/s13246-024-01445-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photoplethysmography, a widely embraced tool for non-invasive blood pressure (BP) monitoring, has demonstrated potential in BP prediction, especially when machine learning techniques are involved. However, predictions with a singular model often fall short in terms of accuracy. In order to counter this issue, we propose an innovative ensemble model that utilizes Light Gradient Boosting Machine (LightGBM) as the base estimator for predicting systolic and diastolic BP. This study included 115 women and 104 men, with experimental results indicating mean absolute errors of 5.63 mmHg and 9.36 mmHg for diastolic and systolic BP, in line with level B and C standards set by the British Hypertension Society. Additionally, our research confronts data imbalance in medical research which can detrimentally affect classification. Here we demonstrate an effective use for the Synthetic Minority Over-sampling Technique (SMOTE) with three nearest neighbors for handling moderate imbalanced datasets. The application of this method outperformed other methods in the field, achieving an F1 score of 81.6% and an AUC value of 0.895, emphasizing the potential value of SMOTE for addressing imbalanced datasets in medical research.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"1307-1321\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01445-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01445-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
光敏血压计是一种广受欢迎的无创血压(BP)监测工具,在 BP 预测方面已显示出潜力,尤其是在涉及机器学习技术时。然而,使用单一模型进行预测的准确性往往不高。为了解决这个问题,我们提出了一种创新的集合模型,利用光梯度提升机(LightGBM)作为预测收缩压和舒张压的基础估计器。这项研究包括 115 名女性和 104 名男性,实验结果表明舒张压和收缩压的平均绝对误差分别为 5.63 mmHg 和 9.36 mmHg,符合英国高血压学会制定的 B 级和 C 级标准。此外,我们的研究还面临着医学研究中的数据不平衡问题,这可能会对分类产生不利影响。在此,我们展示了合成少数群体过度采样技术(SMOTE)与三个最近邻的有效应用,以处理中等程度的不平衡数据集。该方法的应用效果优于该领域的其他方法,F1 得分为 81.6%,AUC 值为 0.895,强调了 SMOTE 在处理医学研究不平衡数据集方面的潜在价值。
Photoplethysmography-based non-invasive blood pressure monitoring via ensemble model and imbalanced dataset processing.
Photoplethysmography, a widely embraced tool for non-invasive blood pressure (BP) monitoring, has demonstrated potential in BP prediction, especially when machine learning techniques are involved. However, predictions with a singular model often fall short in terms of accuracy. In order to counter this issue, we propose an innovative ensemble model that utilizes Light Gradient Boosting Machine (LightGBM) as the base estimator for predicting systolic and diastolic BP. This study included 115 women and 104 men, with experimental results indicating mean absolute errors of 5.63 mmHg and 9.36 mmHg for diastolic and systolic BP, in line with level B and C standards set by the British Hypertension Society. Additionally, our research confronts data imbalance in medical research which can detrimentally affect classification. Here we demonstrate an effective use for the Synthetic Minority Over-sampling Technique (SMOTE) with three nearest neighbors for handling moderate imbalanced datasets. The application of this method outperformed other methods in the field, achieving an F1 score of 81.6% and an AUC value of 0.895, emphasizing the potential value of SMOTE for addressing imbalanced datasets in medical research.