{"title":"估计干扰参数如何减少方差(使用一致的方差估计)。","authors":"Judith J Lok","doi":"10.1002/sim.10164","DOIUrl":null,"url":null,"abstract":"<p><p>We often estimate a parameter of interest <math> <semantics><mrow><mi>ψ</mi></mrow> <annotation>$$ \\psi $$</annotation></semantics> </math> when the identifying conditions involve a finite-dimensional nuisance parameter <math> <semantics><mrow><mi>θ</mi> <mo>∈</mo> <msup><mrow><mi>ℝ</mi></mrow> <mrow><mi>d</mi></mrow> </msup> </mrow> <annotation>$$ \\theta \\in {\\mathbb{R}}^d $$</annotation></semantics> </math> . Examples from causal inference are inverse probability weighting, marginal structural models and structural nested models, which all lead to unbiased estimating equations. This article presents a consistent sandwich estimator for the variance of estimators <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> that solve unbiased estimating equations including <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> which is also estimated by solving unbiased estimating equations. This article presents four additional results for settings where <math> <semantics> <mrow> <mover><mrow><mi>θ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\theta} $$</annotation></semantics> </math> solves (partial) score equations and <math> <semantics><mrow><mi>ψ</mi></mrow> <annotation>$$ \\psi $$</annotation></semantics> </math> does not depend on <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> . This includes many causal inference settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> describes the treatment probabilities, missing data settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> describes the missingness probabilities, and measurement error settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> describes the error distribution. These four additional results are: (1) Counter-intuitively, the asymptotic variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> is typically smaller when <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> is estimated. (2) If estimating <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> is ignored, the sandwich estimator for the variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> is conservative. (3) A consistent sandwich estimator for the variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> . (4) If <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> with the true <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> plugged in is efficient, the asymptotic variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> does not depend on whether <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> is estimated. To illustrate we use observational data to calculate confidence intervals for (1) the effect of cazavi versus colistin on bacterial infections and (2) how the effect of antiretroviral treatment depends on its initiation time in HIV-infected patients.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"4456-4480"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570876/pdf/","citationCount":"0","resultStr":"{\"title\":\"How estimating nuisance parameters can reduce the variance (with consistent variance estimation).\",\"authors\":\"Judith J Lok\",\"doi\":\"10.1002/sim.10164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We often estimate a parameter of interest <math> <semantics><mrow><mi>ψ</mi></mrow> <annotation>$$ \\\\psi $$</annotation></semantics> </math> when the identifying conditions involve a finite-dimensional nuisance parameter <math> <semantics><mrow><mi>θ</mi> <mo>∈</mo> <msup><mrow><mi>ℝ</mi></mrow> <mrow><mi>d</mi></mrow> </msup> </mrow> <annotation>$$ \\\\theta \\\\in {\\\\mathbb{R}}^d $$</annotation></semantics> </math> . Examples from causal inference are inverse probability weighting, marginal structural models and structural nested models, which all lead to unbiased estimating equations. This article presents a consistent sandwich estimator for the variance of estimators <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\\\hat{\\\\psi} $$</annotation></semantics> </math> that solve unbiased estimating equations including <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> which is also estimated by solving unbiased estimating equations. This article presents four additional results for settings where <math> <semantics> <mrow> <mover><mrow><mi>θ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\\\hat{\\\\theta} $$</annotation></semantics> </math> solves (partial) score equations and <math> <semantics><mrow><mi>ψ</mi></mrow> <annotation>$$ \\\\psi $$</annotation></semantics> </math> does not depend on <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> . This includes many causal inference settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> describes the treatment probabilities, missing data settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> describes the missingness probabilities, and measurement error settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> describes the error distribution. These four additional results are: (1) Counter-intuitively, the asymptotic variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\\\hat{\\\\psi} $$</annotation></semantics> </math> is typically smaller when <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> is estimated. (2) If estimating <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> is ignored, the sandwich estimator for the variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\\\hat{\\\\psi} $$</annotation></semantics> </math> is conservative. (3) A consistent sandwich estimator for the variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\\\hat{\\\\psi} $$</annotation></semantics> </math> . (4) If <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\\\hat{\\\\psi} $$</annotation></semantics> </math> with the true <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> plugged in is efficient, the asymptotic variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\\\hat{\\\\psi} $$</annotation></semantics> </math> does not depend on whether <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\\\theta $$</annotation></semantics> </math> is estimated. To illustrate we use observational data to calculate confidence intervals for (1) the effect of cazavi versus colistin on bacterial infections and (2) how the effect of antiretroviral treatment depends on its initiation time in HIV-infected patients.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"4456-4480\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10164\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10164","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
How estimating nuisance parameters can reduce the variance (with consistent variance estimation).
We often estimate a parameter of interest when the identifying conditions involve a finite-dimensional nuisance parameter . Examples from causal inference are inverse probability weighting, marginal structural models and structural nested models, which all lead to unbiased estimating equations. This article presents a consistent sandwich estimator for the variance of estimators that solve unbiased estimating equations including which is also estimated by solving unbiased estimating equations. This article presents four additional results for settings where solves (partial) score equations and does not depend on . This includes many causal inference settings where describes the treatment probabilities, missing data settings where describes the missingness probabilities, and measurement error settings where describes the error distribution. These four additional results are: (1) Counter-intuitively, the asymptotic variance of is typically smaller when is estimated. (2) If estimating is ignored, the sandwich estimator for the variance of is conservative. (3) A consistent sandwich estimator for the variance of . (4) If with the true plugged in is efficient, the asymptotic variance of does not depend on whether is estimated. To illustrate we use observational data to calculate confidence intervals for (1) the effect of cazavi versus colistin on bacterial infections and (2) how the effect of antiretroviral treatment depends on its initiation time in HIV-infected patients.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.