评估体外相关药代动力学结果并将其纳入抗体可开发性工作流程。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-01-01 Epub Date: 2024-07-31 DOI:10.1080/19420862.2024.2384104
Tushar Jain, Bianka Prinz, Alexander Marker, Alexander Michel, Katrin Reichel, Valerie Czepczor, Sylvie Klieber, Wei Sun, Sagar Kathuria, Sevim Oezguer Bruederle, Christian Lange, Lena Wahl, Charles Starr, Alessandro Masiero, Lindsay Avery
{"title":"评估体外相关药代动力学结果并将其纳入抗体可开发性工作流程。","authors":"Tushar Jain, Bianka Prinz, Alexander Marker, Alexander Michel, Katrin Reichel, Valerie Czepczor, Sylvie Klieber, Wei Sun, Sagar Kathuria, Sevim Oezguer Bruederle, Christian Lange, Lena Wahl, Charles Starr, Alessandro Masiero, Lindsay Avery","doi":"10.1080/19420862.2024.2384104","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro assessments for the prediction of pharmacokinetic (PK) behavior of biotherapeutics can help identify corresponding liabilities significantly earlier in the discovery timeline. This can minimize the need for extensive early in vivo PK characterization, thereby reducing animal usage and optimizing resources. In this study, we recommend bolstering classical developability workflows with in vitro measures correlated with PK. In agreement with current literature, in vitro measures assessing nonspecific interactions, self-interaction, and FcRn interaction are demonstrated to have the highest correlations to clearance in hFcRn Tg32 mice. Crucially, the dataset used in this study has broad sequence diversity and a range of physicochemical properties, adding robustness to our recommendations. Finally, we demonstrate a computational approach that combines multiple in vitro measurements with a multivariate regression model to improve the correlation to PK compared to any individual assessment. Our work demonstrates that a judicious choice of high throughput in vitro measurements and computational predictions enables the prioritization of candidate molecules with desired PK properties.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment and incorporation of in vitro correlates to pharmacokinetic outcomes in antibody developability workflows.\",\"authors\":\"Tushar Jain, Bianka Prinz, Alexander Marker, Alexander Michel, Katrin Reichel, Valerie Czepczor, Sylvie Klieber, Wei Sun, Sagar Kathuria, Sevim Oezguer Bruederle, Christian Lange, Lena Wahl, Charles Starr, Alessandro Masiero, Lindsay Avery\",\"doi\":\"10.1080/19420862.2024.2384104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In vitro assessments for the prediction of pharmacokinetic (PK) behavior of biotherapeutics can help identify corresponding liabilities significantly earlier in the discovery timeline. This can minimize the need for extensive early in vivo PK characterization, thereby reducing animal usage and optimizing resources. In this study, we recommend bolstering classical developability workflows with in vitro measures correlated with PK. In agreement with current literature, in vitro measures assessing nonspecific interactions, self-interaction, and FcRn interaction are demonstrated to have the highest correlations to clearance in hFcRn Tg32 mice. Crucially, the dataset used in this study has broad sequence diversity and a range of physicochemical properties, adding robustness to our recommendations. Finally, we demonstrate a computational approach that combines multiple in vitro measurements with a multivariate regression model to improve the correlation to PK compared to any individual assessment. Our work demonstrates that a judicious choice of high throughput in vitro measurements and computational predictions enables the prioritization of candidate molecules with desired PK properties.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2024.2384104\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2384104","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对生物治疗药物的药代动力学(PK)行为进行体外评估预测,有助于在发现新药的时间轴上更早地确定相应的责任。这可以最大限度地减少对大量早期体内 PK 表征的需求,从而减少动物用量并优化资源。在这项研究中,我们建议利用与 PK 相关的体外测量来加强经典的可开发性工作流程。与目前的文献一致,评估非特异性相互作用、自身相互作用和 FcRn 相互作用的体外测量方法被证明与 hFcRn Tg32 小鼠的清除率具有最高的相关性。最重要的是,本研究中使用的数据集具有广泛的序列多样性和一系列理化特性,这为我们的建议增添了稳健性。最后,我们展示了一种将多种体外测量与多元回归模型相结合的计算方法,与任何单独的评估相比,这种方法都能提高与 PK 的相关性。我们的工作表明,明智地选择高通量体外测量和计算预测,可以优先选择具有理想 PK 特性的候选分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment and incorporation of in vitro correlates to pharmacokinetic outcomes in antibody developability workflows.

In vitro assessments for the prediction of pharmacokinetic (PK) behavior of biotherapeutics can help identify corresponding liabilities significantly earlier in the discovery timeline. This can minimize the need for extensive early in vivo PK characterization, thereby reducing animal usage and optimizing resources. In this study, we recommend bolstering classical developability workflows with in vitro measures correlated with PK. In agreement with current literature, in vitro measures assessing nonspecific interactions, self-interaction, and FcRn interaction are demonstrated to have the highest correlations to clearance in hFcRn Tg32 mice. Crucially, the dataset used in this study has broad sequence diversity and a range of physicochemical properties, adding robustness to our recommendations. Finally, we demonstrate a computational approach that combines multiple in vitro measurements with a multivariate regression model to improve the correlation to PK compared to any individual assessment. Our work demonstrates that a judicious choice of high throughput in vitro measurements and computational predictions enables the prioritization of candidate molecules with desired PK properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信