Zhen Chen, Kai Wang, Xiaozhou He, Dong Xue, Xuyi Ma
{"title":"依折麦布酮通过激活 Nrf2/HO-1 信号通路保护肾脏免受缺血再灌注损伤并减轻氧化应激。","authors":"Zhen Chen, Kai Wang, Xiaozhou He, Dong Xue, Xuyi Ma","doi":"10.1002/jbt.23792","DOIUrl":null,"url":null,"abstract":"<p>Recently, ezetimibe (EZM) has been suggested to be a potent Nrf2 activator that is important for preventing oxidative stress. Interestingly, we found that its metabolite ezetimibe ketone (EZM-K) also has antioxidant effects. Thus, we investigated the role of EZM-K in preventing renal ischemia‒reperfusion injury (RIRI). Cultured NRK-52E cells were subjected to simulated IR with or without EZM-K. Rats were used to simulate in vivo experiments. EZM-K alleviated H<sub>2</sub>O<sub>2</sub>-induced apoptosis and reactive oxygen species (ROS) and upregulated Nrf2 and HO-1 levels in NRK-52E cells. A HO-1 and a Nrf2 inhibitor reversed the protective effects of EZM-K. In the rat RIRI model, pretreatment with EZM-K activated the Nrf2/HO-1 signaling pathway, suppressed tubular injury and inflammation, and improved renal function. EZM-K significantly prevented renal injury caused by ischemia‒reperfusion via the Nrf2/HO-1 signaling axis both in vivo and in vitro. The other metabolite of EZM, ezetimibe glucuronide (EZM-G) had no protective effects against ROS in RIRI. EZM-G also had no antioxidant effects and could not activate Nrf2/HO-1 signal pathway. Our findings also indicated the therapeutic potential of EZM-K in preventing RIRI.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ezetimibe ketone protects against renal ischemia–reperfusion injury and attenuates oxidative stress via activation of the Nrf2/HO-1 signaling pathway\",\"authors\":\"Zhen Chen, Kai Wang, Xiaozhou He, Dong Xue, Xuyi Ma\",\"doi\":\"10.1002/jbt.23792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, ezetimibe (EZM) has been suggested to be a potent Nrf2 activator that is important for preventing oxidative stress. Interestingly, we found that its metabolite ezetimibe ketone (EZM-K) also has antioxidant effects. Thus, we investigated the role of EZM-K in preventing renal ischemia‒reperfusion injury (RIRI). Cultured NRK-52E cells were subjected to simulated IR with or without EZM-K. Rats were used to simulate in vivo experiments. EZM-K alleviated H<sub>2</sub>O<sub>2</sub>-induced apoptosis and reactive oxygen species (ROS) and upregulated Nrf2 and HO-1 levels in NRK-52E cells. A HO-1 and a Nrf2 inhibitor reversed the protective effects of EZM-K. In the rat RIRI model, pretreatment with EZM-K activated the Nrf2/HO-1 signaling pathway, suppressed tubular injury and inflammation, and improved renal function. EZM-K significantly prevented renal injury caused by ischemia‒reperfusion via the Nrf2/HO-1 signaling axis both in vivo and in vitro. The other metabolite of EZM, ezetimibe glucuronide (EZM-G) had no protective effects against ROS in RIRI. EZM-G also had no antioxidant effects and could not activate Nrf2/HO-1 signal pathway. Our findings also indicated the therapeutic potential of EZM-K in preventing RIRI.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"38 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23792\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23792","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ezetimibe ketone protects against renal ischemia–reperfusion injury and attenuates oxidative stress via activation of the Nrf2/HO-1 signaling pathway
Recently, ezetimibe (EZM) has been suggested to be a potent Nrf2 activator that is important for preventing oxidative stress. Interestingly, we found that its metabolite ezetimibe ketone (EZM-K) also has antioxidant effects. Thus, we investigated the role of EZM-K in preventing renal ischemia‒reperfusion injury (RIRI). Cultured NRK-52E cells were subjected to simulated IR with or without EZM-K. Rats were used to simulate in vivo experiments. EZM-K alleviated H2O2-induced apoptosis and reactive oxygen species (ROS) and upregulated Nrf2 and HO-1 levels in NRK-52E cells. A HO-1 and a Nrf2 inhibitor reversed the protective effects of EZM-K. In the rat RIRI model, pretreatment with EZM-K activated the Nrf2/HO-1 signaling pathway, suppressed tubular injury and inflammation, and improved renal function. EZM-K significantly prevented renal injury caused by ischemia‒reperfusion via the Nrf2/HO-1 signaling axis both in vivo and in vitro. The other metabolite of EZM, ezetimibe glucuronide (EZM-G) had no protective effects against ROS in RIRI. EZM-G also had no antioxidant effects and could not activate Nrf2/HO-1 signal pathway. Our findings also indicated the therapeutic potential of EZM-K in preventing RIRI.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.