Chin Yang Shapland, Apostolos Gkatzionis, Gibran Hemani, Kate Tilling
{"title":"利用基因相关性研究选择偏差。","authors":"Chin Yang Shapland, Apostolos Gkatzionis, Gibran Hemani, Kate Tilling","doi":"10.1002/gepi.22584","DOIUrl":null,"url":null,"abstract":"<p>Observational studies are rarely representative of their target population because there are known and unknown factors that affect an individual's choice to participate (the selection mechanism). Selection can cause bias in a given analysis if the outcome is related to selection (conditional on the other variables in the model). Detecting and adjusting for selection bias in practice typically requires access to data on nonselected individuals. Here, we propose methods to detect selection bias in genetic studies by comparing correlations among genetic variants in the selected sample to those expected under no selection. We examine the use of four hypothesis tests to identify induced associations between genetic variants in the selected sample. We evaluate these approaches in Monte Carlo simulations. Finally, we use these approaches in an applied example using data from the UK Biobank (UKBB). The proposed tests suggested an association between alcohol consumption and selection into UKBB. Hence, UKBB analyses with alcohol consumption as the exposure or outcome may be biased by this selection.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22584","citationCount":"0","resultStr":"{\"title\":\"Use of genetic correlations to examine selection bias\",\"authors\":\"Chin Yang Shapland, Apostolos Gkatzionis, Gibran Hemani, Kate Tilling\",\"doi\":\"10.1002/gepi.22584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Observational studies are rarely representative of their target population because there are known and unknown factors that affect an individual's choice to participate (the selection mechanism). Selection can cause bias in a given analysis if the outcome is related to selection (conditional on the other variables in the model). Detecting and adjusting for selection bias in practice typically requires access to data on nonselected individuals. Here, we propose methods to detect selection bias in genetic studies by comparing correlations among genetic variants in the selected sample to those expected under no selection. We examine the use of four hypothesis tests to identify induced associations between genetic variants in the selected sample. We evaluate these approaches in Monte Carlo simulations. Finally, we use these approaches in an applied example using data from the UK Biobank (UKBB). The proposed tests suggested an association between alcohol consumption and selection into UKBB. Hence, UKBB analyses with alcohol consumption as the exposure or outcome may be biased by this selection.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22584\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22584\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22584","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Use of genetic correlations to examine selection bias
Observational studies are rarely representative of their target population because there are known and unknown factors that affect an individual's choice to participate (the selection mechanism). Selection can cause bias in a given analysis if the outcome is related to selection (conditional on the other variables in the model). Detecting and adjusting for selection bias in practice typically requires access to data on nonselected individuals. Here, we propose methods to detect selection bias in genetic studies by comparing correlations among genetic variants in the selected sample to those expected under no selection. We examine the use of four hypothesis tests to identify induced associations between genetic variants in the selected sample. We evaluate these approaches in Monte Carlo simulations. Finally, we use these approaches in an applied example using data from the UK Biobank (UKBB). The proposed tests suggested an association between alcohol consumption and selection into UKBB. Hence, UKBB analyses with alcohol consumption as the exposure or outcome may be biased by this selection.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.