通过 ab initio 分子动力学研究两种代表性硝基炸药对 DNTF 热分解机理的影响。

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhiwei Han, Jingyan Wang, Xinyue Zhang, Yaning Li, Biao He
{"title":"通过 ab initio 分子动力学研究两种代表性硝基炸药对 DNTF 热分解机理的影响。","authors":"Zhiwei Han,&nbsp;Jingyan Wang,&nbsp;Xinyue Zhang,&nbsp;Yaning Li,&nbsp;Biao He","doi":"10.1007/s00894-024-06094-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>To investigate the influence of two typical nitro explosives, 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and nitroguanidine (NQ), on the thermal decomposition mechanism of 3,4-Bis (3-nitrofurazan-4-yl) furoxan (DNTF). The study simulates the dynamical behavior of the DNTF/DNTF, DNTF/NQ, and DNTF/LLM-105 systems at different temperatures. We analyzed their thermal decomposition mechanisms through decomposition processes, reaction paths, and product evolution. Building on our analysis of thermal decomposition mechanisms, we found that introducing these two components (NQ and LLM-105) significantly alters the decomposition mechanism of DNTF. This introduction promotes the breakdown of DNTF molecules, modifies the thermal decomposition processes, and consequently changes the reaction pathways. In the DNTF/DNTF system, the product C<sub>3</sub>N<sub>4</sub>O<sub>4</sub> remains stable, while the N–O bond in NO<sub>2</sub> undergoes repeated breaking and formation, ultimately converting into NO. Conversely, in the mixed system, NO<sub>2</sub> persists throughout the simulation, while the reaction product C<sub>3</sub>N<sub>4</sub>O<sub>4</sub> undergoes additional reactions and eventually disappears at higher temperatures. This behavioral disparity determines distinct decomposition mechanisms between the mixed and pure DNTF systems.</p><h3>Methods</h3><p>To investigate the thermal decomposition mechanisms of DNTF/LLM-105 and DNTF/NQ composite energetic materials, the first-principles calculation software CP2K is used. The GFNI-xTB (Geometry, Frequency, and Noncovalent, eXtended Tight Binding) program within CP2K is employed. This method provides a powerful tool for performing calculations with arbitrary accuracy on complex systems.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the impact of two representative nitro explosives on the thermal decomposition mechanism of DNTF through ab initio molecular dynamics\",\"authors\":\"Zhiwei Han,&nbsp;Jingyan Wang,&nbsp;Xinyue Zhang,&nbsp;Yaning Li,&nbsp;Biao He\",\"doi\":\"10.1007/s00894-024-06094-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>To investigate the influence of two typical nitro explosives, 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and nitroguanidine (NQ), on the thermal decomposition mechanism of 3,4-Bis (3-nitrofurazan-4-yl) furoxan (DNTF). The study simulates the dynamical behavior of the DNTF/DNTF, DNTF/NQ, and DNTF/LLM-105 systems at different temperatures. We analyzed their thermal decomposition mechanisms through decomposition processes, reaction paths, and product evolution. Building on our analysis of thermal decomposition mechanisms, we found that introducing these two components (NQ and LLM-105) significantly alters the decomposition mechanism of DNTF. This introduction promotes the breakdown of DNTF molecules, modifies the thermal decomposition processes, and consequently changes the reaction pathways. In the DNTF/DNTF system, the product C<sub>3</sub>N<sub>4</sub>O<sub>4</sub> remains stable, while the N–O bond in NO<sub>2</sub> undergoes repeated breaking and formation, ultimately converting into NO. Conversely, in the mixed system, NO<sub>2</sub> persists throughout the simulation, while the reaction product C<sub>3</sub>N<sub>4</sub>O<sub>4</sub> undergoes additional reactions and eventually disappears at higher temperatures. This behavioral disparity determines distinct decomposition mechanisms between the mixed and pure DNTF systems.</p><h3>Methods</h3><p>To investigate the thermal decomposition mechanisms of DNTF/LLM-105 and DNTF/NQ composite energetic materials, the first-principles calculation software CP2K is used. The GFNI-xTB (Geometry, Frequency, and Noncovalent, eXtended Tight Binding) program within CP2K is employed. This method provides a powerful tool for performing calculations with arbitrary accuracy on complex systems.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06094-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06094-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:研究 2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)和硝基胍(NQ)这两种典型硝基炸药对 3,4-双(3-硝基呋喃-4-基)呋喃(DNTF)热分解机理的影响。研究模拟了 DNTF/DNTF、DNTF/NQ 和 DNTF/LLM-105 体系在不同温度下的动力学行为。我们通过分解过程、反应路径和产物演化分析了它们的热分解机制。在热分解机理分析的基础上,我们发现引入这两种成分(NQ 和 LLM-105)会显著改变 DNTF 的分解机理。这种引入促进了 DNTF 分子的分解,改变了热分解过程,进而改变了反应途径。在 DNTF/DNTF 体系中,产物 C3N4O4 保持稳定,而 NO2 中的 N-O 键经过反复断裂和形成,最终转化为 NO。相反,在混合体系中,NO2 在整个模拟过程中持续存在,而反应产物 C3N4O4 则会发生更多反应,并最终在较高温度下消失。这种行为差异决定了混合体系和纯 DNTF 体系之间不同的分解机制:为了研究 DNTF/LLM-105 和 DNTF/NQ 复合高能材料的热分解机理,我们使用了第一原理计算软件 CP2K。在 CP2K 中使用了 GFNI-xTB(几何、频率和非共价、扩展紧密结合)程序。这种方法提供了一种强大的工具,可以对复杂系统进行任意精度的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the impact of two representative nitro explosives on the thermal decomposition mechanism of DNTF through ab initio molecular dynamics

Investigating the impact of two representative nitro explosives on the thermal decomposition mechanism of DNTF through ab initio molecular dynamics

Context

To investigate the influence of two typical nitro explosives, 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and nitroguanidine (NQ), on the thermal decomposition mechanism of 3,4-Bis (3-nitrofurazan-4-yl) furoxan (DNTF). The study simulates the dynamical behavior of the DNTF/DNTF, DNTF/NQ, and DNTF/LLM-105 systems at different temperatures. We analyzed their thermal decomposition mechanisms through decomposition processes, reaction paths, and product evolution. Building on our analysis of thermal decomposition mechanisms, we found that introducing these two components (NQ and LLM-105) significantly alters the decomposition mechanism of DNTF. This introduction promotes the breakdown of DNTF molecules, modifies the thermal decomposition processes, and consequently changes the reaction pathways. In the DNTF/DNTF system, the product C3N4O4 remains stable, while the N–O bond in NO2 undergoes repeated breaking and formation, ultimately converting into NO. Conversely, in the mixed system, NO2 persists throughout the simulation, while the reaction product C3N4O4 undergoes additional reactions and eventually disappears at higher temperatures. This behavioral disparity determines distinct decomposition mechanisms between the mixed and pure DNTF systems.

Methods

To investigate the thermal decomposition mechanisms of DNTF/LLM-105 and DNTF/NQ composite energetic materials, the first-principles calculation software CP2K is used. The GFNI-xTB (Geometry, Frequency, and Noncovalent, eXtended Tight Binding) program within CP2K is employed. This method provides a powerful tool for performing calculations with arbitrary accuracy on complex systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信