预测高校学生辍学的模型

Anaíle Mendes Rabelo, Luis Enrique Zárate
{"title":"预测高校学生辍学的模型","authors":"Anaíle Mendes Rabelo,&nbsp;Luis Enrique Zárate","doi":"10.1016/j.dsm.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Higher education institutions are becoming increasingly concerned with the retention of their students. This work is motivated by the interest in predicting and reducing student dropout, and consequently in reducing the financial losses of said institutions. Based on the characterization of the dropout problem and the application of a knowledge discovery process, an ensemble model is proposed to improve dropout prediction. The ensemble model combines the results of three models: Logistic Regression, Neural Networks, and Decision Tree. As a result, the model can correctly classify 89% of the students as enrolled or dropped and accurately identify 98.1% of dropouts. When compared with the Random Forest ensemble method, the proposed model demonstrates desirable characteristics to assist management in proposing actions to retain students.</div></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":"8 1","pages":"Pages 72-85"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for predicting dropout of higher education students\",\"authors\":\"Anaíle Mendes Rabelo,&nbsp;Luis Enrique Zárate\",\"doi\":\"10.1016/j.dsm.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Higher education institutions are becoming increasingly concerned with the retention of their students. This work is motivated by the interest in predicting and reducing student dropout, and consequently in reducing the financial losses of said institutions. Based on the characterization of the dropout problem and the application of a knowledge discovery process, an ensemble model is proposed to improve dropout prediction. The ensemble model combines the results of three models: Logistic Regression, Neural Networks, and Decision Tree. As a result, the model can correctly classify 89% of the students as enrolled or dropped and accurately identify 98.1% of dropouts. When compared with the Random Forest ensemble method, the proposed model demonstrates desirable characteristics to assist management in proposing actions to retain students.</div></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":\"8 1\",\"pages\":\"Pages 72-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764924000341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764924000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高等教育机构越来越关注学生的留用问题。这项工作的动机是对预测和减少学生辍学的兴趣,从而减少所述机构的经济损失。在对辍学问题进行表征的基础上,应用知识发现过程,提出了一种集成模型来改进辍学预测。集成模型结合了逻辑回归、神经网络和决策树三种模型的结果。因此,该模型可以正确地将89%的学生分类为入学或辍学,并准确地识别出98.1%的辍学者。当与随机森林集成方法比较时,所提出的模型显示出理想的特性,以帮助管理层提出保留学生的行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model for predicting dropout of higher education students
Higher education institutions are becoming increasingly concerned with the retention of their students. This work is motivated by the interest in predicting and reducing student dropout, and consequently in reducing the financial losses of said institutions. Based on the characterization of the dropout problem and the application of a knowledge discovery process, an ensemble model is proposed to improve dropout prediction. The ensemble model combines the results of three models: Logistic Regression, Neural Networks, and Decision Tree. As a result, the model can correctly classify 89% of the students as enrolled or dropped and accurately identify 98.1% of dropouts. When compared with the Random Forest ensemble method, the proposed model demonstrates desirable characteristics to assist management in proposing actions to retain students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信