皮质骨质量的跨绝经期变化

IF 3.5 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Bone Pub Date : 2024-07-28 DOI:10.1016/j.bone.2024.117217
E.P. Paschalis , S. Gamsjaeger , S. Bare , R. Recker , M. Akhter
{"title":"皮质骨质量的跨绝经期变化","authors":"E.P. Paschalis ,&nbsp;S. Gamsjaeger ,&nbsp;S. Bare ,&nbsp;R. Recker ,&nbsp;M. Akhter","doi":"10.1016/j.bone.2024.117217","DOIUrl":null,"url":null,"abstract":"<div><p>Bone's resistance to fracture depends on its amount and quality, the latter including its structural and material/compositional properties. Bone material properties are dependent on bone turnover rates, which are significantly elevated immediately following menopause. Previously published data reported that following menopause, the amount of organic matrix synthesized at actively forming surfaces is significantly decreased, while glycosaminoglycan content was also modulated at resorbing surfaces, in the cancellous compartment.</p><p>In the present study, we used Raman microspectroscopic analysis of paired iliac crest biopsies obtained before and shortly after menopause (1 year after cessation of menses) in healthy females to investigate changes in material/compositional properties due to menopause, in the cortical compartment. Specifically, the mineral/matrix ratio, the relative proteoglycan content, the mineral maturity/crystallinity, and the relative pyridinoline collagen cross-link content were determined at actively forming intracortical surfaces (osteons) as a function of tissue age, as well as in interstitial bone.</p><p>Results indicated that it is the freshly synthesized organic matrix content that significantly declines following menopause, in agreement with what was previously reported for the cancellous compartment. This decline was not evident in the freshly deposited mineral content. None of the compositional/quality properties were altered following menopause either. Finally, no differences in any of the monitored parameters were evident in cortical interstitial bone.</p></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"187 ","pages":"Article 117217"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmenopausal changes in cortical bone quality\",\"authors\":\"E.P. Paschalis ,&nbsp;S. Gamsjaeger ,&nbsp;S. Bare ,&nbsp;R. Recker ,&nbsp;M. Akhter\",\"doi\":\"10.1016/j.bone.2024.117217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bone's resistance to fracture depends on its amount and quality, the latter including its structural and material/compositional properties. Bone material properties are dependent on bone turnover rates, which are significantly elevated immediately following menopause. Previously published data reported that following menopause, the amount of organic matrix synthesized at actively forming surfaces is significantly decreased, while glycosaminoglycan content was also modulated at resorbing surfaces, in the cancellous compartment.</p><p>In the present study, we used Raman microspectroscopic analysis of paired iliac crest biopsies obtained before and shortly after menopause (1 year after cessation of menses) in healthy females to investigate changes in material/compositional properties due to menopause, in the cortical compartment. Specifically, the mineral/matrix ratio, the relative proteoglycan content, the mineral maturity/crystallinity, and the relative pyridinoline collagen cross-link content were determined at actively forming intracortical surfaces (osteons) as a function of tissue age, as well as in interstitial bone.</p><p>Results indicated that it is the freshly synthesized organic matrix content that significantly declines following menopause, in agreement with what was previously reported for the cancellous compartment. This decline was not evident in the freshly deposited mineral content. None of the compositional/quality properties were altered following menopause either. Finally, no differences in any of the monitored parameters were evident in cortical interstitial bone.</p></div>\",\"PeriodicalId\":9301,\"journal\":{\"name\":\"Bone\",\"volume\":\"187 \",\"pages\":\"Article 117217\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S8756328224002060\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328224002060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

骨骼的抗骨折能力取决于其数量和质量,后者包括其结构和材料/组成特性。骨材料特性取决于骨转换率,而骨转换率在绝经后会立即显著升高。在本研究中,我们对健康女性绝经前和绝经后不久(停经 1 年后)获得的成对髂嵴活检组织进行了拉曼显微光谱分析,以研究绝经导致的骨皮质材料/组成特性的变化。结果表明,在绝经后,新鲜合成的有机基质含量显著下降,这与之前关于松质骨的报道一致。这种下降在新沉积的矿物质含量中并不明显。成分/质量特性在绝经后也没有发生变化。最后,皮质间质骨的任何监测参数均无明显差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transmenopausal changes in cortical bone quality

Bone's resistance to fracture depends on its amount and quality, the latter including its structural and material/compositional properties. Bone material properties are dependent on bone turnover rates, which are significantly elevated immediately following menopause. Previously published data reported that following menopause, the amount of organic matrix synthesized at actively forming surfaces is significantly decreased, while glycosaminoglycan content was also modulated at resorbing surfaces, in the cancellous compartment.

In the present study, we used Raman microspectroscopic analysis of paired iliac crest biopsies obtained before and shortly after menopause (1 year after cessation of menses) in healthy females to investigate changes in material/compositional properties due to menopause, in the cortical compartment. Specifically, the mineral/matrix ratio, the relative proteoglycan content, the mineral maturity/crystallinity, and the relative pyridinoline collagen cross-link content were determined at actively forming intracortical surfaces (osteons) as a function of tissue age, as well as in interstitial bone.

Results indicated that it is the freshly synthesized organic matrix content that significantly declines following menopause, in agreement with what was previously reported for the cancellous compartment. This decline was not evident in the freshly deposited mineral content. None of the compositional/quality properties were altered following menopause either. Finally, no differences in any of the monitored parameters were evident in cortical interstitial bone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone
Bone 医学-内分泌学与代谢
CiteScore
8.90
自引率
4.90%
发文量
264
审稿时长
30 days
期刊介绍: BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信