Chien-Hung Lin , Wen-Sheng Liu , Chuan Wan , Hsin-Hui Wang
{"title":"PPARγ 激活可通过抑制铁蜕变和上皮-间质转化改善 PM2.5 诱导的肾小管损伤","authors":"Chien-Hung Lin , Wen-Sheng Liu , Chuan Wan , Hsin-Hui Wang","doi":"10.1016/j.crtox.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Exposure to fine particulate matter (PM2.5) has been associated with the development and progression of renal disease. Peroxisome proliferator-activated receptor gamma (PPARγ), a key transcription factor involved in inflammation as well as lipid and glucose metabolism, helps maintain the integrity of tubular epithelial cells. However, the precise role of PPARγ in PM2.5-induced tubular injury remains unclear. In this study, we investigated the regulatory effects of PPARγ on PM2.5-induced ferroptotic stress and epithelial–mesenchymal transition (EMT) in tubular (HK-2) cells. We found that downregulation of PPARγ expression was correlated with EMT in PM2.5-exposed cells. Pretreatment with the PPARγ agonist 15d-PGJ2 protected the cells from EMT by reducing ferroptotic stress, whereas that with the PPARγ antagonist GW9662 promoted EMT. Furthermore, pretreatment with ferrostatin-1 (Fer-1) significantly prevented PM2.5-induced EMT and downregulation of PPARγ expression. Notably, overexpression of PPARγ blocked PM2.5-induced downregulation of E-cadherin and GPX4 expression and upregulation of α-SMA expression. This study highlights the complex associations of PPARγ with ferroptosis and EMT in PM2.5-exposed tubular cells. Our findings suggest that PPARγ activation confers protection against PM2.5-induced renal injury.</p></div>","PeriodicalId":11236,"journal":{"name":"Current Research in Toxicology","volume":"7 ","pages":"Article 100189"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666027X24000422/pdfft?md5=902c1b7607a020f8948c7daf50b6eb1b&pid=1-s2.0-S2666027X24000422-main.pdf","citationCount":"0","resultStr":"{\"title\":\"PPARγ activation ameliorates PM2.5-induced renal tubular injury by inhibiting ferroptosis and epithelial–mesenchymal transition\",\"authors\":\"Chien-Hung Lin , Wen-Sheng Liu , Chuan Wan , Hsin-Hui Wang\",\"doi\":\"10.1016/j.crtox.2024.100189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exposure to fine particulate matter (PM2.5) has been associated with the development and progression of renal disease. Peroxisome proliferator-activated receptor gamma (PPARγ), a key transcription factor involved in inflammation as well as lipid and glucose metabolism, helps maintain the integrity of tubular epithelial cells. However, the precise role of PPARγ in PM2.5-induced tubular injury remains unclear. In this study, we investigated the regulatory effects of PPARγ on PM2.5-induced ferroptotic stress and epithelial–mesenchymal transition (EMT) in tubular (HK-2) cells. We found that downregulation of PPARγ expression was correlated with EMT in PM2.5-exposed cells. Pretreatment with the PPARγ agonist 15d-PGJ2 protected the cells from EMT by reducing ferroptotic stress, whereas that with the PPARγ antagonist GW9662 promoted EMT. Furthermore, pretreatment with ferrostatin-1 (Fer-1) significantly prevented PM2.5-induced EMT and downregulation of PPARγ expression. Notably, overexpression of PPARγ blocked PM2.5-induced downregulation of E-cadherin and GPX4 expression and upregulation of α-SMA expression. This study highlights the complex associations of PPARγ with ferroptosis and EMT in PM2.5-exposed tubular cells. Our findings suggest that PPARγ activation confers protection against PM2.5-induced renal injury.</p></div>\",\"PeriodicalId\":11236,\"journal\":{\"name\":\"Current Research in Toxicology\",\"volume\":\"7 \",\"pages\":\"Article 100189\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000422/pdfft?md5=902c1b7607a020f8948c7daf50b6eb1b&pid=1-s2.0-S2666027X24000422-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666027X24000422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
PPARγ activation ameliorates PM2.5-induced renal tubular injury by inhibiting ferroptosis and epithelial–mesenchymal transition
Exposure to fine particulate matter (PM2.5) has been associated with the development and progression of renal disease. Peroxisome proliferator-activated receptor gamma (PPARγ), a key transcription factor involved in inflammation as well as lipid and glucose metabolism, helps maintain the integrity of tubular epithelial cells. However, the precise role of PPARγ in PM2.5-induced tubular injury remains unclear. In this study, we investigated the regulatory effects of PPARγ on PM2.5-induced ferroptotic stress and epithelial–mesenchymal transition (EMT) in tubular (HK-2) cells. We found that downregulation of PPARγ expression was correlated with EMT in PM2.5-exposed cells. Pretreatment with the PPARγ agonist 15d-PGJ2 protected the cells from EMT by reducing ferroptotic stress, whereas that with the PPARγ antagonist GW9662 promoted EMT. Furthermore, pretreatment with ferrostatin-1 (Fer-1) significantly prevented PM2.5-induced EMT and downregulation of PPARγ expression. Notably, overexpression of PPARγ blocked PM2.5-induced downregulation of E-cadherin and GPX4 expression and upregulation of α-SMA expression. This study highlights the complex associations of PPARγ with ferroptosis and EMT in PM2.5-exposed tubular cells. Our findings suggest that PPARγ activation confers protection against PM2.5-induced renal injury.