具有纯跳跃噪声的随机卡马萨-霍姆方程的马丁格尔解

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Yong Chen , Jinqiao Duan , Hongjun Gao
{"title":"具有纯跳跃噪声的随机卡马萨-霍姆方程的马丁格尔解","authors":"Yong Chen ,&nbsp;Jinqiao Duan ,&nbsp;Hongjun Gao","doi":"10.1016/j.spa.2024.104446","DOIUrl":null,"url":null,"abstract":"<div><p>We study the stochastic Camassa–Holm equation with pure jump noise. We establish the existence of the global martingale solution by the regularization method, the tightness criterion, the generalization of the Skorokhod theorem for nonmetric spaces and the stochastic renormalized formulations.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"176 ","pages":"Article 104446"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Martingale solution of the stochastic Camassa–Holm equation with pure jump noise\",\"authors\":\"Yong Chen ,&nbsp;Jinqiao Duan ,&nbsp;Hongjun Gao\",\"doi\":\"10.1016/j.spa.2024.104446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the stochastic Camassa–Holm equation with pure jump noise. We establish the existence of the global martingale solution by the regularization method, the tightness criterion, the generalization of the Skorokhod theorem for nonmetric spaces and the stochastic renormalized formulations.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"176 \",\"pages\":\"Article 104446\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001522\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001522","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有纯跳跃噪声的随机卡马萨-霍姆方程。我们通过正则化方法、严密性准则、Skorokhod 定理在非度量空间中的广义以及随机重归一化公式,确定了全局马氏解法的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Martingale solution of the stochastic Camassa–Holm equation with pure jump noise

We study the stochastic Camassa–Holm equation with pure jump noise. We establish the existence of the global martingale solution by the regularization method, the tightness criterion, the generalization of the Skorokhod theorem for nonmetric spaces and the stochastic renormalized formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信