ML-CCD:预测用 FRP 片材加固的钢筋混凝土梁中混凝土覆盖层分层破坏模式的机器学习模型

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Fahed H. Salahat , Hayder A. Rasheed , Huthaifa I. Ashqar
{"title":"ML-CCD:预测用 FRP 片材加固的钢筋混凝土梁中混凝土覆盖层分层破坏模式的机器学习模型","authors":"Fahed H. Salahat ,&nbsp;Hayder A. Rasheed ,&nbsp;Huthaifa I. Ashqar","doi":"10.1016/j.simpa.2024.100685","DOIUrl":null,"url":null,"abstract":"<div><p>ML-CCD is an open-source Python software based on a Machine-Learning model that was utilized to predict the premature failure of reinforced concrete (RC) beams strengthened with Fiber Reinforced Polymers (FRP). The model was trained using a database consisting of 70 experimentally tested beams that failed prematurely due to Concrete Cover Delamination (CCD). The significant beams parameters that influence the CCD failure were used in training the ML-CCD. This software predicts the ultimate strain in the FRP sheets at failure, thus finding its ultimate tensile strength and the effective strengthening ratio for design purposes.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100685"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000733/pdfft?md5=3b38c4db2e6b7b7f0c7512330dc601b9&pid=1-s2.0-S2665963824000733-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ML-CCD: machine learning model to predict concrete cover delamination failure mode in reinforced concrete beams strengthened with FRP sheets\",\"authors\":\"Fahed H. Salahat ,&nbsp;Hayder A. Rasheed ,&nbsp;Huthaifa I. Ashqar\",\"doi\":\"10.1016/j.simpa.2024.100685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>ML-CCD is an open-source Python software based on a Machine-Learning model that was utilized to predict the premature failure of reinforced concrete (RC) beams strengthened with Fiber Reinforced Polymers (FRP). The model was trained using a database consisting of 70 experimentally tested beams that failed prematurely due to Concrete Cover Delamination (CCD). The significant beams parameters that influence the CCD failure were used in training the ML-CCD. This software predicts the ultimate strain in the FRP sheets at failure, thus finding its ultimate tensile strength and the effective strengthening ratio for design purposes.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"21 \",\"pages\":\"Article 100685\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000733/pdfft?md5=3b38c4db2e6b7b7f0c7512330dc601b9&pid=1-s2.0-S2665963824000733-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

ML-CCD 是一款开源 Python 软件,基于机器学习模型,用于预测使用纤维增强聚合物 (FRP) 加固的钢筋混凝土 (RC) 梁的过早失效。该模型通过一个数据库进行训练,该数据库由 70 个经过实验测试的因混凝土覆盖层分层(CCD)而过早失效的梁组成。影响 CCD 失效的重要梁参数被用于训练 ML-CCD。该软件可预测玻璃钢板材在失效时的极限应变,从而找出其极限抗拉强度和有效强化率,以用于设计目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML-CCD: machine learning model to predict concrete cover delamination failure mode in reinforced concrete beams strengthened with FRP sheets

ML-CCD is an open-source Python software based on a Machine-Learning model that was utilized to predict the premature failure of reinforced concrete (RC) beams strengthened with Fiber Reinforced Polymers (FRP). The model was trained using a database consisting of 70 experimentally tested beams that failed prematurely due to Concrete Cover Delamination (CCD). The significant beams parameters that influence the CCD failure were used in training the ML-CCD. This software predicts the ultimate strain in the FRP sheets at failure, thus finding its ultimate tensile strength and the effective strengthening ratio for design purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信