基于三种人工智能算法开发可解释的 QSPR 模型,用于预测辛醇-水分配系数

IF 9.1 Q1 ENGINEERING, CHEMICAL
Ao Yang , Shirui Sun , Lu Qi , Zong Yang Kong , Jaka Sunarso , Weifeng Shen
{"title":"基于三种人工智能算法开发可解释的 QSPR 模型,用于预测辛醇-水分配系数","authors":"Ao Yang ,&nbsp;Shirui Sun ,&nbsp;Lu Qi ,&nbsp;Zong Yang Kong ,&nbsp;Jaka Sunarso ,&nbsp;Weifeng Shen","doi":"10.1016/j.gce.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to significantly improve existing quantitative structure-property relationship (QSPR) models for predicting the octanol-water partition coefficient (<em>K</em><sub>OW</sub>). This is because accurate predictions of <em>K</em><sub>OW</sub> are crucial for assessing the environmental behavior and bioaccumulation potential of chemicals. Previous models have reported determination coefficient (R<sup>2</sup>) values between 0.9451 and 0.9681, and this research seeks to exceed these benchmarks. Three machine learning (ML) models are explored, <em>i.e.</em>, feed-forward neural networks (FNN), extreme gradient boosting (XGBoost), and random forest (RF). Using a dataset of 14,610 solvents (14,580 after data cleaning) and 21 molecular descriptors derived from SMILES representations, we rigorously evaluate these models based on R<sup>2</sup>, mean absolute error (MAE), root mean squared error (RMSE), and mean relative error (MRE). Notably, the best model developed, the XGBoost-based QSPR, demonstrated exceptional performance, exhibiting an impressive R<sup>2</sup> value of 0.9772, surpassing benchmarks set by prior research models. Additionally, shapley additive explanation (SHAP) analysis is also employed for model interpretation, and it is revealed that the top five influential input features include SMR_VSA8, SMR_VSA3, Kappa2, HeavyAtomCount, and fr_furan. This study not only sets a new benchmark for <em>K</em><sub>OW</sub> prediction accuracy but also enhances the interpretability of QSPR models.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 2","pages":"Pages 193-199"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an interpretable QSPR model to predict the octanol-water partition coefficient based on three artificial intelligence algorithms\",\"authors\":\"Ao Yang ,&nbsp;Shirui Sun ,&nbsp;Lu Qi ,&nbsp;Zong Yang Kong ,&nbsp;Jaka Sunarso ,&nbsp;Weifeng Shen\",\"doi\":\"10.1016/j.gce.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to significantly improve existing quantitative structure-property relationship (QSPR) models for predicting the octanol-water partition coefficient (<em>K</em><sub>OW</sub>). This is because accurate predictions of <em>K</em><sub>OW</sub> are crucial for assessing the environmental behavior and bioaccumulation potential of chemicals. Previous models have reported determination coefficient (R<sup>2</sup>) values between 0.9451 and 0.9681, and this research seeks to exceed these benchmarks. Three machine learning (ML) models are explored, <em>i.e.</em>, feed-forward neural networks (FNN), extreme gradient boosting (XGBoost), and random forest (RF). Using a dataset of 14,610 solvents (14,580 after data cleaning) and 21 molecular descriptors derived from SMILES representations, we rigorously evaluate these models based on R<sup>2</sup>, mean absolute error (MAE), root mean squared error (RMSE), and mean relative error (MRE). Notably, the best model developed, the XGBoost-based QSPR, demonstrated exceptional performance, exhibiting an impressive R<sup>2</sup> value of 0.9772, surpassing benchmarks set by prior research models. Additionally, shapley additive explanation (SHAP) analysis is also employed for model interpretation, and it is revealed that the top five influential input features include SMR_VSA8, SMR_VSA3, Kappa2, HeavyAtomCount, and fr_furan. This study not only sets a new benchmark for <em>K</em><sub>OW</sub> prediction accuracy but also enhances the interpretability of QSPR models.</div></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":\"6 2\",\"pages\":\"Pages 193-199\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666952824000542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952824000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在显著改进现有的定量构性关系(QSPR)模型预测辛醇-水分配系数(KOW)。这是因为准确的KOW预测对于评估化学品的环境行为和生物积累潜力至关重要。以前的模型报告的决定系数(R2)值在0.9451和0.9681之间,本研究寻求超越这些基准。探索了三种机器学习(ML)模型,即前馈神经网络(FNN),极端梯度增强(XGBoost)和随机森林(RF)。使用14,610种溶剂的数据集(数据清洗后为14,580种)和21种来自SMILES表示的分子描述符,我们基于R2、平均绝对误差(MAE)、均方根误差(RMSE)和平均相对误差(MRE)对这些模型进行了严格评估。值得注意的是,开发的最佳模型,基于xgboost的QSPR,表现出卓越的性能,显示出令人印象深刻的R2值0.9772,超过了先前研究模型设定的基准。此外,还采用shapley加性解释(SHAP)分析对模型进行解释,发现影响最大的5个输入特征包括SMR_VSA8、SMR_VSA3、Kappa2、HeavyAtomCount和fr_furan。该研究不仅为KOW预测精度提供了新的基准,而且提高了QSPR模型的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of an interpretable QSPR model to predict the octanol-water partition coefficient based on three artificial intelligence algorithms

Development of an interpretable QSPR model to predict the octanol-water partition coefficient based on three artificial intelligence algorithms
This study aims to significantly improve existing quantitative structure-property relationship (QSPR) models for predicting the octanol-water partition coefficient (KOW). This is because accurate predictions of KOW are crucial for assessing the environmental behavior and bioaccumulation potential of chemicals. Previous models have reported determination coefficient (R2) values between 0.9451 and 0.9681, and this research seeks to exceed these benchmarks. Three machine learning (ML) models are explored, i.e., feed-forward neural networks (FNN), extreme gradient boosting (XGBoost), and random forest (RF). Using a dataset of 14,610 solvents (14,580 after data cleaning) and 21 molecular descriptors derived from SMILES representations, we rigorously evaluate these models based on R2, mean absolute error (MAE), root mean squared error (RMSE), and mean relative error (MRE). Notably, the best model developed, the XGBoost-based QSPR, demonstrated exceptional performance, exhibiting an impressive R2 value of 0.9772, surpassing benchmarks set by prior research models. Additionally, shapley additive explanation (SHAP) analysis is also employed for model interpretation, and it is revealed that the top five influential input features include SMR_VSA8, SMR_VSA3, Kappa2, HeavyAtomCount, and fr_furan. This study not only sets a new benchmark for KOW prediction accuracy but also enhances the interpretability of QSPR models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信