采用稀疏增量哈希象素的轻量级高带宽激光雷达-惯性测距仪

Chiayang Lin, Kejia Sun, Tianrui Zhao, Zhengwen Nie, Yanzheng Zhao
{"title":"采用稀疏增量哈希象素的轻量级高带宽激光雷达-惯性测距仪","authors":"Chiayang Lin, Kejia Sun, Tianrui Zhao, Zhengwen Nie, Yanzheng Zhao","doi":"10.1088/1742-6596/2795/1/012006","DOIUrl":null,"url":null,"abstract":"\n This work introduces a lightweight LIO framework employing incremental voxels for enhanced efficiency. We leverage a sparse voxel data structure, replacing the tree structure in the Point-LIO open-source framework. Through hash table-managed voxel indexes, we achieve rapid K nearest neighbor search within nearly one voxel size with constant complexity query speed. This approach significantly reduces the time cost associated with tree nodes construction, balancing, and iteration compared to the tree-like structures. Experimental results demonstrate that our proposed enhancement achieves an average speed-up of 21.5% compared to Point-LIO in publicly available datasets. Moreover, it reduces drift by an average of approximately 20(m) and ATE by 1.41(m) under sparse point cloud input conditions.","PeriodicalId":506941,"journal":{"name":"Journal of Physics: Conference Series","volume":"22 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight High-Bandwidth LiDAR-Inertial Odometry Employing Sparse Incremental Hash-Voxels\",\"authors\":\"Chiayang Lin, Kejia Sun, Tianrui Zhao, Zhengwen Nie, Yanzheng Zhao\",\"doi\":\"10.1088/1742-6596/2795/1/012006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work introduces a lightweight LIO framework employing incremental voxels for enhanced efficiency. We leverage a sparse voxel data structure, replacing the tree structure in the Point-LIO open-source framework. Through hash table-managed voxel indexes, we achieve rapid K nearest neighbor search within nearly one voxel size with constant complexity query speed. This approach significantly reduces the time cost associated with tree nodes construction, balancing, and iteration compared to the tree-like structures. Experimental results demonstrate that our proposed enhancement achieves an average speed-up of 21.5% compared to Point-LIO in publicly available datasets. Moreover, it reduces drift by an average of approximately 20(m) and ATE by 1.41(m) under sparse point cloud input conditions.\",\"PeriodicalId\":506941,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"22 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2795/1/012006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2795/1/012006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作引入了一种轻量级 LIO 框架,采用增量体素来提高效率。我们利用稀疏体素数据结构,取代了 Point-LIO 开源框架中的树形结构。通过哈希表管理的体素索引,我们以恒定的复杂度查询速度实现了近一个体素大小内的快速 K 近邻搜索。与树状结构相比,这种方法大大减少了与树节点构建、平衡和迭代相关的时间成本。实验结果表明,在公开可用的数据集中,我们提出的改进方案比 Point-LIO 平均提速 21.5%。此外,在稀疏点云输入条件下,它平均减少了约 20(m) 的漂移和 1.41(m) 的 ATE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight High-Bandwidth LiDAR-Inertial Odometry Employing Sparse Incremental Hash-Voxels
This work introduces a lightweight LIO framework employing incremental voxels for enhanced efficiency. We leverage a sparse voxel data structure, replacing the tree structure in the Point-LIO open-source framework. Through hash table-managed voxel indexes, we achieve rapid K nearest neighbor search within nearly one voxel size with constant complexity query speed. This approach significantly reduces the time cost associated with tree nodes construction, balancing, and iteration compared to the tree-like structures. Experimental results demonstrate that our proposed enhancement achieves an average speed-up of 21.5% compared to Point-LIO in publicly available datasets. Moreover, it reduces drift by an average of approximately 20(m) and ATE by 1.41(m) under sparse point cloud input conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信