蜜蜂-螨虫模型在参数平面上的复杂动力学行为

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sarbari Karmakar, Nikhil Pal
{"title":"蜜蜂-螨虫模型在参数平面上的复杂动力学行为","authors":"Sarbari Karmakar,&nbsp;Nikhil Pal","doi":"10.1016/j.physd.2024.134300","DOIUrl":null,"url":null,"abstract":"<div><p>The honeybee has a significant impact on ecosystem stability, biodiversity conservation, and pollinating crops. However, during the past few years, there has been a sharp reduction in both the honeybee population and their colonies. It has been found that the parasitic mite <em>Varroa destructor</em> is responsible for the decline in honeybee colonies around the world, which in turn immensely affects the economic growth of a country. To investigate how the dynamics of a system is influenced by the growth of honeybees and the parasitism of mites, we study a nonlinear honeybee-mite population model in a discrete-time setup. We observe that an increase in the value of the queen’s egg-laying rate drives the system towards chaos. However, chaos can be controlled as well if the parasite attachment effect is increased. The intrinsic dynamical properties of the proposed system are investigated with the simultaneous variation of the queen’s egg-laying rate and the mite’s parasite attachment effect by constructing several largest Lyapunov exponent and isoperiodic diagrams. The investigation reveals the existence of several periodic structures in the quasiperiodic and chaotic regimes of the parameter plane, including Arnold tongues, saddle area, spring area, connected shrimp-shaped structure, and connected saddle area. We also find the appearance of a novel ‘jellyfish’-shaped periodic structure. One of the most fascinating findings of this study is the appearance of Arnold tongues along the inner boundary region of another Arnold tongue. In addition, this work also reveals different types of multistability, e.g., the coexistence of two, three, and even four attractors. What is more interesting is that the current analysis unveils the coexistence of five attractors as well, more specifically, four different periodic attractors coexist with the trivial fixed point attractor, which is quite rare in ecological systems. The structures of the basins of these coexisting attractors are either smooth or very complex in nature. Furthermore, the present study also discloses the fact that variation in the initial condition of the system can significantly change the appearance of the periodic structures in the parameter plane.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex dynamical behaviors of a honeybee-mite model in parameter plane\",\"authors\":\"Sarbari Karmakar,&nbsp;Nikhil Pal\",\"doi\":\"10.1016/j.physd.2024.134300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The honeybee has a significant impact on ecosystem stability, biodiversity conservation, and pollinating crops. However, during the past few years, there has been a sharp reduction in both the honeybee population and their colonies. It has been found that the parasitic mite <em>Varroa destructor</em> is responsible for the decline in honeybee colonies around the world, which in turn immensely affects the economic growth of a country. To investigate how the dynamics of a system is influenced by the growth of honeybees and the parasitism of mites, we study a nonlinear honeybee-mite population model in a discrete-time setup. We observe that an increase in the value of the queen’s egg-laying rate drives the system towards chaos. However, chaos can be controlled as well if the parasite attachment effect is increased. The intrinsic dynamical properties of the proposed system are investigated with the simultaneous variation of the queen’s egg-laying rate and the mite’s parasite attachment effect by constructing several largest Lyapunov exponent and isoperiodic diagrams. The investigation reveals the existence of several periodic structures in the quasiperiodic and chaotic regimes of the parameter plane, including Arnold tongues, saddle area, spring area, connected shrimp-shaped structure, and connected saddle area. We also find the appearance of a novel ‘jellyfish’-shaped periodic structure. One of the most fascinating findings of this study is the appearance of Arnold tongues along the inner boundary region of another Arnold tongue. In addition, this work also reveals different types of multistability, e.g., the coexistence of two, three, and even four attractors. What is more interesting is that the current analysis unveils the coexistence of five attractors as well, more specifically, four different periodic attractors coexist with the trivial fixed point attractor, which is quite rare in ecological systems. The structures of the basins of these coexisting attractors are either smooth or very complex in nature. Furthermore, the present study also discloses the fact that variation in the initial condition of the system can significantly change the appearance of the periodic structures in the parameter plane.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

蜜蜂对生态系统的稳定、生物多样性的保护以及农作物的授粉都有着重要影响。然而,在过去的几年里,蜜蜂的数量和蜂群都急剧减少。研究发现,寄生螨虫 Varroa destructor 是造成全球蜜蜂数量减少的原因,而蜜蜂数量的减少又会极大地影响一个国家的经济增长。为了研究蜜蜂的增长和螨虫的寄生对系统动态的影响,我们研究了离散时间设置下的非线性蜜蜂-螨虫种群模型。我们发现,蜂王产卵率值的增加会使系统趋于混乱。然而,如果寄生虫的附着效应增加,混乱也能得到控制。通过构建几个最大的李雅普诺夫指数和等周期图,研究了同时改变蜂王产卵率和螨虫寄生虫附着效应的拟议系统的内在动态特性。研究发现,在参数平面的准周期和混沌状态下存在几种周期结构,包括阿诺德舌、鞍区、弹簧区、连接虾形结构和连接鞍区。我们还发现了一种新颖的 "水母 "形周期结构。这项研究最吸引人的发现之一是沿着另一个阿诺德舌的内部边界区域出现了阿诺德舌。此外,这项工作还揭示了不同类型的多稳定性,例如两个、三个甚至四个吸引子的共存。更有趣的是,目前的分析还揭示了五种吸引子的共存,更具体地说,四种不同的周期吸引子与微不足道的定点吸引子共存,这在生态系统中是非常罕见的。这些共存吸引子的基底结构要么平滑,要么非常复杂。此外,本研究还揭示了一个事实,即系统初始条件的变化会显著改变参数平面上周期性结构的外观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex dynamical behaviors of a honeybee-mite model in parameter plane

The honeybee has a significant impact on ecosystem stability, biodiversity conservation, and pollinating crops. However, during the past few years, there has been a sharp reduction in both the honeybee population and their colonies. It has been found that the parasitic mite Varroa destructor is responsible for the decline in honeybee colonies around the world, which in turn immensely affects the economic growth of a country. To investigate how the dynamics of a system is influenced by the growth of honeybees and the parasitism of mites, we study a nonlinear honeybee-mite population model in a discrete-time setup. We observe that an increase in the value of the queen’s egg-laying rate drives the system towards chaos. However, chaos can be controlled as well if the parasite attachment effect is increased. The intrinsic dynamical properties of the proposed system are investigated with the simultaneous variation of the queen’s egg-laying rate and the mite’s parasite attachment effect by constructing several largest Lyapunov exponent and isoperiodic diagrams. The investigation reveals the existence of several periodic structures in the quasiperiodic and chaotic regimes of the parameter plane, including Arnold tongues, saddle area, spring area, connected shrimp-shaped structure, and connected saddle area. We also find the appearance of a novel ‘jellyfish’-shaped periodic structure. One of the most fascinating findings of this study is the appearance of Arnold tongues along the inner boundary region of another Arnold tongue. In addition, this work also reveals different types of multistability, e.g., the coexistence of two, three, and even four attractors. What is more interesting is that the current analysis unveils the coexistence of five attractors as well, more specifically, four different periodic attractors coexist with the trivial fixed point attractor, which is quite rare in ecological systems. The structures of the basins of these coexisting attractors are either smooth or very complex in nature. Furthermore, the present study also discloses the fact that variation in the initial condition of the system can significantly change the appearance of the periodic structures in the parameter plane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信