{"title":"基于并行机器学习的回归树海啸波预报方法","authors":"Eugenio Cesario , Salvatore Giampá , Enrico Baglione , Louise Cordrie , Jacopo Selva , Domenico Talia","doi":"10.1016/j.comcom.2024.07.016","DOIUrl":null,"url":null,"abstract":"<div><p>Following a seismic event, tsunami early warning systems (TEWSs) try to provide precise forecasts of the maximum height of incoming waves at designated target points along the coast. This information is crucial to trigger early warnings in areas where the impact of tsunami waves is predicted to be dangerous (or potentially cause destruction), to help the management of the potential impact of a tsunami as well as reduce environmental destruction and losses of human lives. For such a reason, it is crucial that TEWSs produce predictions with short computation time while maintaining a high prediction accuracy. This paper presents a parallel machine learning approach, based on regression trees, to discover tsunami predictive models from simulation data. In order to achieve the results in a short time, the proposed approach relies on the parallelization of the most time consuming tasks and on incremental learning executions, in order to achieve higher performances in terms of execution time, efficiency and scalability. The experimental evaluation, performed on two real tsunami cases occurred in the Western and Eastern Mediterranean basin in 2003 and 2017, shows reasonable advantages in terms of scalability and execution time, which is an important benefit in a urgent-computing scenarios.</p></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"225 ","pages":"Pages 217-228"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0140366424002548/pdfft?md5=ffb356f16788d8b2eff52b72c2b7187b&pid=1-s2.0-S0140366424002548-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A parallel machine learning-based approach for tsunami waves forecasting using regression trees\",\"authors\":\"Eugenio Cesario , Salvatore Giampá , Enrico Baglione , Louise Cordrie , Jacopo Selva , Domenico Talia\",\"doi\":\"10.1016/j.comcom.2024.07.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Following a seismic event, tsunami early warning systems (TEWSs) try to provide precise forecasts of the maximum height of incoming waves at designated target points along the coast. This information is crucial to trigger early warnings in areas where the impact of tsunami waves is predicted to be dangerous (or potentially cause destruction), to help the management of the potential impact of a tsunami as well as reduce environmental destruction and losses of human lives. For such a reason, it is crucial that TEWSs produce predictions with short computation time while maintaining a high prediction accuracy. This paper presents a parallel machine learning approach, based on regression trees, to discover tsunami predictive models from simulation data. In order to achieve the results in a short time, the proposed approach relies on the parallelization of the most time consuming tasks and on incremental learning executions, in order to achieve higher performances in terms of execution time, efficiency and scalability. The experimental evaluation, performed on two real tsunami cases occurred in the Western and Eastern Mediterranean basin in 2003 and 2017, shows reasonable advantages in terms of scalability and execution time, which is an important benefit in a urgent-computing scenarios.</p></div>\",\"PeriodicalId\":55224,\"journal\":{\"name\":\"Computer Communications\",\"volume\":\"225 \",\"pages\":\"Pages 217-228\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0140366424002548/pdfft?md5=ffb356f16788d8b2eff52b72c2b7187b&pid=1-s2.0-S0140366424002548-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140366424002548\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424002548","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A parallel machine learning-based approach for tsunami waves forecasting using regression trees
Following a seismic event, tsunami early warning systems (TEWSs) try to provide precise forecasts of the maximum height of incoming waves at designated target points along the coast. This information is crucial to trigger early warnings in areas where the impact of tsunami waves is predicted to be dangerous (or potentially cause destruction), to help the management of the potential impact of a tsunami as well as reduce environmental destruction and losses of human lives. For such a reason, it is crucial that TEWSs produce predictions with short computation time while maintaining a high prediction accuracy. This paper presents a parallel machine learning approach, based on regression trees, to discover tsunami predictive models from simulation data. In order to achieve the results in a short time, the proposed approach relies on the parallelization of the most time consuming tasks and on incremental learning executions, in order to achieve higher performances in terms of execution time, efficiency and scalability. The experimental evaluation, performed on two real tsunami cases occurred in the Western and Eastern Mediterranean basin in 2003 and 2017, shows reasonable advantages in terms of scalability and execution time, which is an important benefit in a urgent-computing scenarios.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.