血管手术中导管引导的优化:强化学习的贡献比较分析

Cheima Bouden
{"title":"血管手术中导管引导的优化:强化学习的贡献比较分析","authors":"Cheima Bouden","doi":"10.1016/j.isurg.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Precision in catheter guidance is essential for the success of vascular surgeries, yet current methods often need more accuracy due to the complex anatomy and dynamics of blood vessels.</p></div><div><h3>Methods</h3><p>This study evaluates the efficacy of advanced reinforcement learning (RL) techniques to enhance catheter navigation. We compare different RL approaches within simulated vascular environments, focusing on their success rates, operational efficiency, and adaptability to varied clinical scenarios.</p></div><div><h3>Results</h3><p>Advanced reinforcement learning techniques display exceptional performance, yielding high success rates and improved precision in catheter guidance. Integrating specific enhancements has notably increased learning speeds and strengthened operational robustness.</p></div><div><h3>Conclusion</h3><p>The study indicates that reinforcement learning could significantly improve the precision and safety of catheter navigation in vascular surgery. By adopting these techniques, medical practices could see more accurate and less invasive procedures, enhancing patient outcomes. Future research should aim to refine these algorithms for wider clinical use and integration.</p></div>","PeriodicalId":100683,"journal":{"name":"Intelligent Surgery","volume":"7 ","pages":"Pages 53-61"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666676624000103/pdfft?md5=0f3cdcc44d34ed2f9c653d8069a2d199&pid=1-s2.0-S2666676624000103-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards an optimization of catheter guidance in vascular surgery: A comparative analysis of the contribution of reinforcement learning\",\"authors\":\"Cheima Bouden\",\"doi\":\"10.1016/j.isurg.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Precision in catheter guidance is essential for the success of vascular surgeries, yet current methods often need more accuracy due to the complex anatomy and dynamics of blood vessels.</p></div><div><h3>Methods</h3><p>This study evaluates the efficacy of advanced reinforcement learning (RL) techniques to enhance catheter navigation. We compare different RL approaches within simulated vascular environments, focusing on their success rates, operational efficiency, and adaptability to varied clinical scenarios.</p></div><div><h3>Results</h3><p>Advanced reinforcement learning techniques display exceptional performance, yielding high success rates and improved precision in catheter guidance. Integrating specific enhancements has notably increased learning speeds and strengthened operational robustness.</p></div><div><h3>Conclusion</h3><p>The study indicates that reinforcement learning could significantly improve the precision and safety of catheter navigation in vascular surgery. By adopting these techniques, medical practices could see more accurate and less invasive procedures, enhancing patient outcomes. Future research should aim to refine these algorithms for wider clinical use and integration.</p></div>\",\"PeriodicalId\":100683,\"journal\":{\"name\":\"Intelligent Surgery\",\"volume\":\"7 \",\"pages\":\"Pages 53-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666676624000103/pdfft?md5=0f3cdcc44d34ed2f9c653d8069a2d199&pid=1-s2.0-S2666676624000103-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666676624000103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Surgery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666676624000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景导管引导的精确性对血管手术的成功至关重要,但由于血管的解剖结构和动态变化十分复杂,目前的方法往往需要更高的精确性。我们在模拟血管环境中对不同的强化学习方法进行了比较,重点关注它们的成功率、运行效率以及对不同临床场景的适应性。结果强化学习技术表现优异,成功率高,导管引导的精确度也有所提高。研究表明,强化学习可以显著提高血管手术中导管导航的精确性和安全性。通过采用这些技术,医疗实践中可以看到更精确、创伤更小的手术,从而提高患者的治疗效果。未来的研究应致力于完善这些算法,以便在临床上更广泛地使用和整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an optimization of catheter guidance in vascular surgery: A comparative analysis of the contribution of reinforcement learning

Background

Precision in catheter guidance is essential for the success of vascular surgeries, yet current methods often need more accuracy due to the complex anatomy and dynamics of blood vessels.

Methods

This study evaluates the efficacy of advanced reinforcement learning (RL) techniques to enhance catheter navigation. We compare different RL approaches within simulated vascular environments, focusing on their success rates, operational efficiency, and adaptability to varied clinical scenarios.

Results

Advanced reinforcement learning techniques display exceptional performance, yielding high success rates and improved precision in catheter guidance. Integrating specific enhancements has notably increased learning speeds and strengthened operational robustness.

Conclusion

The study indicates that reinforcement learning could significantly improve the precision and safety of catheter navigation in vascular surgery. By adopting these techniques, medical practices could see more accurate and less invasive procedures, enhancing patient outcomes. Future research should aim to refine these algorithms for wider clinical use and integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信