预测不确定性 实时数据驱动的优化存储控制补偿方案

Arbel Yaniv, Yuval Beck
{"title":"预测不确定性 实时数据驱动的优化存储控制补偿方案","authors":"Arbel Yaniv,&nbsp;Yuval Beck","doi":"10.1016/j.dsm.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts, which are integral to an optimal energy storage control system. By expanding on an existing algorithm, this study resolves issues discovered during implementation and addresses previously overlooked concerns, resulting in significant enhancements in both performance and reliability. The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model, which is utilized for illustrative simulations to highlight its potential efficacy on a real site. Furthermore, a comprehensive comparison with the original formulation was conducted to cover all possible scenarios. This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system. Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management, significant financial losses and penalties, and potential contract violations. The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements. These advancements yield a reliable and efficient real-time correction algorithm for optimal site management, designed as an independent white box that can be integrated with any day-ahead optimization control system.</div></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":"8 1","pages":"Pages 59-71"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecast uncertainties real-time data-driven compensation scheme for optimal storage control\",\"authors\":\"Arbel Yaniv,&nbsp;Yuval Beck\",\"doi\":\"10.1016/j.dsm.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts, which are integral to an optimal energy storage control system. By expanding on an existing algorithm, this study resolves issues discovered during implementation and addresses previously overlooked concerns, resulting in significant enhancements in both performance and reliability. The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model, which is utilized for illustrative simulations to highlight its potential efficacy on a real site. Furthermore, a comprehensive comparison with the original formulation was conducted to cover all possible scenarios. This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system. Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management, significant financial losses and penalties, and potential contract violations. The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements. These advancements yield a reliable and efficient real-time correction algorithm for optimal site management, designed as an independent white box that can be integrated with any day-ahead optimization control system.</div></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":\"8 1\",\"pages\":\"Pages 59-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764924000353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764924000353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种实时数据驱动的电池管理方案,旨在解决负载和发电预测中的不确定性,这是最优储能控制系统的组成部分。通过对现有算法的扩展,本研究解决了在实现过程中发现的问题,并解决了以前被忽视的问题,从而显著提高了性能和可靠性。将改进后的实时控制方案与日前优化引擎和预测模型相结合,并进行了实例仿真,以突出其在实际现场的潜在效果。此外,还与原始配方进行了全面比较,以涵盖所有可能的情况。该分析验证了该方案的操作有效性,并提供了对控制系统改进和预期行为的详细评估。为了降低预测的不确定性而进行的不正确或不适当的调整可能导致能源管理不理想、重大的经济损失和处罚,以及潜在的合同违约。修改后的算法可以实时优化电池系统的运行,并通过限制充电/放电周期和强制遵守合同协议来保障电池系统的健康状态。这些进步为优化现场管理提供了可靠、高效的实时校正算法,该算法被设计为一个独立的白盒,可以与任何日前优化控制系统集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecast uncertainties real-time data-driven compensation scheme for optimal storage control
This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts, which are integral to an optimal energy storage control system. By expanding on an existing algorithm, this study resolves issues discovered during implementation and addresses previously overlooked concerns, resulting in significant enhancements in both performance and reliability. The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model, which is utilized for illustrative simulations to highlight its potential efficacy on a real site. Furthermore, a comprehensive comparison with the original formulation was conducted to cover all possible scenarios. This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system. Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management, significant financial losses and penalties, and potential contract violations. The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements. These advancements yield a reliable and efficient real-time correction algorithm for optimal site management, designed as an independent white box that can be integrated with any day-ahead optimization control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信