基于粒子群优化和栅极递归单元的质子交换膜燃料电池性能衰减预测模型

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ziliang Zhao , Yifan Fu , Ji Pu , Zhangu Wang , Senhao Shen , Duo Ma , Qianya Xie , Fojin Zhou
{"title":"基于粒子群优化和栅极递归单元的质子交换膜燃料电池性能衰减预测模型","authors":"Ziliang Zhao ,&nbsp;Yifan Fu ,&nbsp;Ji Pu ,&nbsp;Zhangu Wang ,&nbsp;Senhao Shen ,&nbsp;Duo Ma ,&nbsp;Qianya Xie ,&nbsp;Fojin Zhou","doi":"10.1016/j.egyai.2024.100399","DOIUrl":null,"url":null,"abstract":"<div><p>The durability of proton exchange membrane fuel cells (PEMFC) is an important issue that restricts their large-scale application. To improve their reliability during use, this paper proposes a short-term performance degradation prediction model using particle swarm optimization (PSO) to optimize the gate recurrent unit (GRU). After training using only the data from the first 300 h, good prediction accuracy can be achieved. Compared with the traditional GRU algorithm, the proposed prediction method reduces the root mean square error (RMSE) and mean absolute error (MAE) of the prediction results by 44.8 % and 35.1 %, respectively. It avoids the problem of low accuracy in predicting performance during the temporary recovery phase in traditional GRU models, which is of great significance for the health management of PEMFC.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"17 ","pages":"Article 100399"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654682400065X/pdfft?md5=52ea45d35e987757f5f242b84f21efe3&pid=1-s2.0-S266654682400065X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance decay prediction model of proton exchange membrane fuel cell based on particle swarm optimization and gate recurrent unit\",\"authors\":\"Ziliang Zhao ,&nbsp;Yifan Fu ,&nbsp;Ji Pu ,&nbsp;Zhangu Wang ,&nbsp;Senhao Shen ,&nbsp;Duo Ma ,&nbsp;Qianya Xie ,&nbsp;Fojin Zhou\",\"doi\":\"10.1016/j.egyai.2024.100399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The durability of proton exchange membrane fuel cells (PEMFC) is an important issue that restricts their large-scale application. To improve their reliability during use, this paper proposes a short-term performance degradation prediction model using particle swarm optimization (PSO) to optimize the gate recurrent unit (GRU). After training using only the data from the first 300 h, good prediction accuracy can be achieved. Compared with the traditional GRU algorithm, the proposed prediction method reduces the root mean square error (RMSE) and mean absolute error (MAE) of the prediction results by 44.8 % and 35.1 %, respectively. It avoids the problem of low accuracy in predicting performance during the temporary recovery phase in traditional GRU models, which is of great significance for the health management of PEMFC.</p></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"17 \",\"pages\":\"Article 100399\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266654682400065X/pdfft?md5=52ea45d35e987757f5f242b84f21efe3&pid=1-s2.0-S266654682400065X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266654682400065X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654682400065X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(PEMFC)的耐用性是限制其大规模应用的一个重要问题。为了提高质子交换膜燃料电池在使用过程中的可靠性,本文提出了一种短期性能退化预测模型,利用粒子群优化(PSO)来优化栅极递归单元(GRU)。仅使用前 300 小时的数据进行训练后,就能获得良好的预测精度。与传统的 GRU 算法相比,所提出的预测方法将预测结果的均方根误差(RMSE)和平均绝对误差(MAE)分别降低了 44.8% 和 35.1%。它避免了传统 GRU 模型在临时恢复阶段性能预测准确度低的问题,对 PEMFC 的健康管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance decay prediction model of proton exchange membrane fuel cell based on particle swarm optimization and gate recurrent unit

Performance decay prediction model of proton exchange membrane fuel cell based on particle swarm optimization and gate recurrent unit

The durability of proton exchange membrane fuel cells (PEMFC) is an important issue that restricts their large-scale application. To improve their reliability during use, this paper proposes a short-term performance degradation prediction model using particle swarm optimization (PSO) to optimize the gate recurrent unit (GRU). After training using only the data from the first 300 h, good prediction accuracy can be achieved. Compared with the traditional GRU algorithm, the proposed prediction method reduces the root mean square error (RMSE) and mean absolute error (MAE) of the prediction results by 44.8 % and 35.1 %, respectively. It avoids the problem of low accuracy in predicting performance during the temporary recovery phase in traditional GRU models, which is of great significance for the health management of PEMFC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信