基于反激式转换器的便携式电源 LQR 控制器设计

Bing Zou, Dehui He, Jianan Liang
{"title":"基于反激式转换器的便携式电源 LQR 控制器设计","authors":"Bing Zou, Dehui He, Jianan Liang","doi":"10.1088/1742-6596/2797/1/012030","DOIUrl":null,"url":null,"abstract":"\n The stability of the power repair equipment guarantees the reliability of the repair of electrical equipment. The following problems exist in the power supply of the emergency equipment: the load equipment randomly cuts in the power supply network; load equipment requires fast dynamic performance of the power supply. This challenges the stability of the portable power supply with the Flyback converter as the core. In this paper, an optimal feedback control strategy based on linear quadratic regulator (LQR) theory is proposed to improve the dynamic and steady-state performance of the Flyback converter. First, the state-averaged space model of the Flyback is derived and established. Second, an output voltage feedback integral controller is introduced to eliminate the steady-state error of the output voltage. Next, according to the LQR optimal control theory, the control model of the Flyback converter has been established, and the parameter design of the controller has been carried out by obtaining the optimal feedback gain matrix of the system. Finally, the simulation models are implemented with an output power of 120 W and a switching frequency of 50 kHz. The simulation results prove that the LQR controller provides superior performance than the traditional PI controller.","PeriodicalId":506941,"journal":{"name":"Journal of Physics: Conference Series","volume":"35 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LQR controller design for portable power supply based on flyback converter\",\"authors\":\"Bing Zou, Dehui He, Jianan Liang\",\"doi\":\"10.1088/1742-6596/2797/1/012030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The stability of the power repair equipment guarantees the reliability of the repair of electrical equipment. The following problems exist in the power supply of the emergency equipment: the load equipment randomly cuts in the power supply network; load equipment requires fast dynamic performance of the power supply. This challenges the stability of the portable power supply with the Flyback converter as the core. In this paper, an optimal feedback control strategy based on linear quadratic regulator (LQR) theory is proposed to improve the dynamic and steady-state performance of the Flyback converter. First, the state-averaged space model of the Flyback is derived and established. Second, an output voltage feedback integral controller is introduced to eliminate the steady-state error of the output voltage. Next, according to the LQR optimal control theory, the control model of the Flyback converter has been established, and the parameter design of the controller has been carried out by obtaining the optimal feedback gain matrix of the system. Finally, the simulation models are implemented with an output power of 120 W and a switching frequency of 50 kHz. The simulation results prove that the LQR controller provides superior performance than the traditional PI controller.\",\"PeriodicalId\":506941,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2797/1/012030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2797/1/012030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力维修设备的稳定性保证了电力设备维修的可靠性。应急设备的供电存在以下问题:负载设备随意切断供电网络;负载设备要求电源具有快速的动态性能。这对以反激式转换器为核心的便携式电源的稳定性提出了挑战。本文提出了一种基于线性二次调节器(LQR)理论的优化反馈控制策略,以改善反激式转换器的动态和稳态性能。首先,推导并建立了反激式转换器的状态平均空间模型。其次,引入输出电压反馈积分控制器来消除输出电压的稳态误差。接着,根据 LQR 最佳控制理论,建立了反激式转换器的控制模型,并通过获得系统的最佳反馈增益矩阵来进行控制器的参数设计。最后,在输出功率为 120 W、开关频率为 50 kHz 的条件下实现了仿真模型。仿真结果证明,LQR 控制器的性能优于传统的 PI 控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LQR controller design for portable power supply based on flyback converter
The stability of the power repair equipment guarantees the reliability of the repair of electrical equipment. The following problems exist in the power supply of the emergency equipment: the load equipment randomly cuts in the power supply network; load equipment requires fast dynamic performance of the power supply. This challenges the stability of the portable power supply with the Flyback converter as the core. In this paper, an optimal feedback control strategy based on linear quadratic regulator (LQR) theory is proposed to improve the dynamic and steady-state performance of the Flyback converter. First, the state-averaged space model of the Flyback is derived and established. Second, an output voltage feedback integral controller is introduced to eliminate the steady-state error of the output voltage. Next, according to the LQR optimal control theory, the control model of the Flyback converter has been established, and the parameter design of the controller has been carried out by obtaining the optimal feedback gain matrix of the system. Finally, the simulation models are implemented with an output power of 120 W and a switching frequency of 50 kHz. The simulation results prove that the LQR controller provides superior performance than the traditional PI controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信