有理型收缩及其在扩展 b 计量空间中的应用

Q3 Mathematics
Nabil Mlaiki , Syed Khayyam Shah , Muhammad Sarwar
{"title":"有理型收缩及其在扩展 b 计量空间中的应用","authors":"Nabil Mlaiki ,&nbsp;Syed Khayyam Shah ,&nbsp;Muhammad Sarwar","doi":"10.1016/j.rico.2024.100456","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines the analysis of some rational-type contractions within the context of extended b-metric spaces, establishes a theoretical foundation for rational-type contractions and demonstrates their application in Volterra integral inclusions and Urysohn integral equations. Some examples are provided for the authenticity of the findings.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"16 ","pages":"Article 100456"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000869/pdfft?md5=9fedb89cc2219d491d45521f31dc686c&pid=1-s2.0-S2666720724000869-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rational-type contractions and their applications in extended b-metric spaces\",\"authors\":\"Nabil Mlaiki ,&nbsp;Syed Khayyam Shah ,&nbsp;Muhammad Sarwar\",\"doi\":\"10.1016/j.rico.2024.100456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines the analysis of some rational-type contractions within the context of extended b-metric spaces, establishes a theoretical foundation for rational-type contractions and demonstrates their application in Volterra integral inclusions and Urysohn integral equations. Some examples are provided for the authenticity of the findings.</p></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"16 \",\"pages\":\"Article 100456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000869/pdfft?md5=9fedb89cc2219d491d45521f31dc686c&pid=1-s2.0-S2666720724000869-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了扩展 b 度量空间中一些有理型收缩的分析,建立了有理型收缩的理论基础,并展示了它们在 Volterra 积分夹杂和 Urysohn 积分方程中的应用。为了证明结论的真实性,我们提供了一些实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational-type contractions and their applications in extended b-metric spaces

This paper examines the analysis of some rational-type contractions within the context of extended b-metric spaces, establishes a theoretical foundation for rational-type contractions and demonstrates their application in Volterra integral inclusions and Urysohn integral equations. Some examples are provided for the authenticity of the findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信