Yiting Feng, Zhaofeng Ma, Pengfei Duan, Shoushan Luo
{"title":"基于 BERT 人工智能模型的区块链智能触点漏洞自动检测","authors":"Yiting Feng, Zhaofeng Ma, Pengfei Duan, Shoushan Luo","doi":"10.23919/JCC.ja.2023-0189","DOIUrl":null,"url":null,"abstract":"The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields. Cryptographic algorithms and smart contracts are critical components of blockchain security. Despite the benefits of virtual currency, vulnerabilities in smart contracts have resulted in substantial losses to users. While researchers have identified these vulnerabilities and developed tools for detecting them, the accuracy of these tools is still far from satisfactory, with high false positive and false negative rates. In this paper, we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model, which can quickly and effectively process and detect smart contracts. More specifically, we preprocess and make symbol substitution in the contract, which can make the pre-training model better obtain contract features. We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools, demonstrating its superior accuracy.","PeriodicalId":504777,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated vulnerability detection of blockchain smart contacts based on BERT artificial intelligent model\",\"authors\":\"Yiting Feng, Zhaofeng Ma, Pengfei Duan, Shoushan Luo\",\"doi\":\"10.23919/JCC.ja.2023-0189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields. Cryptographic algorithms and smart contracts are critical components of blockchain security. Despite the benefits of virtual currency, vulnerabilities in smart contracts have resulted in substantial losses to users. While researchers have identified these vulnerabilities and developed tools for detecting them, the accuracy of these tools is still far from satisfactory, with high false positive and false negative rates. In this paper, we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model, which can quickly and effectively process and detect smart contracts. More specifically, we preprocess and make symbol substitution in the contract, which can make the pre-training model better obtain contract features. We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools, demonstrating its superior accuracy.\",\"PeriodicalId\":504777,\"journal\":{\"name\":\"China Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/JCC.ja.2023-0189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/JCC.ja.2023-0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated vulnerability detection of blockchain smart contacts based on BERT artificial intelligent model
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields. Cryptographic algorithms and smart contracts are critical components of blockchain security. Despite the benefits of virtual currency, vulnerabilities in smart contracts have resulted in substantial losses to users. While researchers have identified these vulnerabilities and developed tools for detecting them, the accuracy of these tools is still far from satisfactory, with high false positive and false negative rates. In this paper, we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model, which can quickly and effectively process and detect smart contracts. More specifically, we preprocess and make symbol substitution in the contract, which can make the pre-training model better obtain contract features. We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools, demonstrating its superior accuracy.