{"title":"海马区梗死和全身抽搐可预测小鼠血管内大脑中动脉闭塞后的早期死亡率","authors":"","doi":"10.1016/j.expneurol.2024.114903","DOIUrl":null,"url":null,"abstract":"<div><p>Endovascular middle cerebral artery occlusion (MCAO) is a widely used experimental ischemic stroke model. However, the model carries high early mortality. Our aim was to investigate the factors that influence early mortality within 48 h of reperfusion after transient MCAO. Using C57BL/6 mice, we induced 1-hour endovascular filament MCAO. To introduce heterogeneity of infarct volumes, a subset of animals had additional tandem common carotid artery occlusion (MCAO+CCAO). Continuous video monitoring was used to gain insight into the cause of death. Mortality within 48 h was 25% in the pooled cohort. All animals with early mortality suffered from infarcts in the hippocampus, sometimes accompanied by infarcts in the thalamus and midbrain, which occurred exclusively in the MCAO+CCAO group. All animals with early mortality developed convulsive seizures captured on video monitoring. None of the animals that did not develop convulsive seizures died. Among the three regions, hippocampal infarction appeared necessary for convulsive seizures and early mortality. Our data highlight seizures as the primary cause of mortality within the first 48 h after endovascular filament MCAO, linked to hippocampal infarction. Since hippocampal blood supply is mainly from the posterior cerebral artery (PCA), avoiding concurrent PCA ischemia can decrease mortality in proximal MCAO models.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hippocampal infarction and generalized seizures predict early mortality after endovascular middle cerebral artery occlusion in mice\",\"authors\":\"\",\"doi\":\"10.1016/j.expneurol.2024.114903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Endovascular middle cerebral artery occlusion (MCAO) is a widely used experimental ischemic stroke model. However, the model carries high early mortality. Our aim was to investigate the factors that influence early mortality within 48 h of reperfusion after transient MCAO. Using C57BL/6 mice, we induced 1-hour endovascular filament MCAO. To introduce heterogeneity of infarct volumes, a subset of animals had additional tandem common carotid artery occlusion (MCAO+CCAO). Continuous video monitoring was used to gain insight into the cause of death. Mortality within 48 h was 25% in the pooled cohort. All animals with early mortality suffered from infarcts in the hippocampus, sometimes accompanied by infarcts in the thalamus and midbrain, which occurred exclusively in the MCAO+CCAO group. All animals with early mortality developed convulsive seizures captured on video monitoring. None of the animals that did not develop convulsive seizures died. Among the three regions, hippocampal infarction appeared necessary for convulsive seizures and early mortality. Our data highlight seizures as the primary cause of mortality within the first 48 h after endovascular filament MCAO, linked to hippocampal infarction. Since hippocampal blood supply is mainly from the posterior cerebral artery (PCA), avoiding concurrent PCA ischemia can decrease mortality in proximal MCAO models.</p></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488624002292\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624002292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Hippocampal infarction and generalized seizures predict early mortality after endovascular middle cerebral artery occlusion in mice
Endovascular middle cerebral artery occlusion (MCAO) is a widely used experimental ischemic stroke model. However, the model carries high early mortality. Our aim was to investigate the factors that influence early mortality within 48 h of reperfusion after transient MCAO. Using C57BL/6 mice, we induced 1-hour endovascular filament MCAO. To introduce heterogeneity of infarct volumes, a subset of animals had additional tandem common carotid artery occlusion (MCAO+CCAO). Continuous video monitoring was used to gain insight into the cause of death. Mortality within 48 h was 25% in the pooled cohort. All animals with early mortality suffered from infarcts in the hippocampus, sometimes accompanied by infarcts in the thalamus and midbrain, which occurred exclusively in the MCAO+CCAO group. All animals with early mortality developed convulsive seizures captured on video monitoring. None of the animals that did not develop convulsive seizures died. Among the three regions, hippocampal infarction appeared necessary for convulsive seizures and early mortality. Our data highlight seizures as the primary cause of mortality within the first 48 h after endovascular filament MCAO, linked to hippocampal infarction. Since hippocampal blood supply is mainly from the posterior cerebral artery (PCA), avoiding concurrent PCA ischemia can decrease mortality in proximal MCAO models.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.