用于电池应用的硅量子点上锂吸附的 DFT 研究

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Fadjar Mulya , Thanawit Kuamit , Pavee Apilardmongkol , Vudhichai Parasuk
{"title":"用于电池应用的硅量子点上锂吸附的 DFT 研究","authors":"Fadjar Mulya ,&nbsp;Thanawit Kuamit ,&nbsp;Pavee Apilardmongkol ,&nbsp;Vudhichai Parasuk","doi":"10.1016/j.physe.2024.116060","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding lithium (Li) adsorption in silicon quantum dots (SiQDs) is crucial for optimizing Li-ion battery (LIB) anode materials. We systematically investigated Li adsorption in ten hydrogenated SiQDs (Si<sub>10</sub>H<sub>16</sub>, Si<sub>14</sub>H<sub>20</sub>, Si<sub>18</sub>H<sub>24</sub>, Si<sub>22</sub>H<sub>28</sub>, Si<sub>26</sub>H<sub>30</sub>, Si<sub>30</sub>H<sub>34</sub>, Si<sub>35</sub>H<sub>36</sub>, Si<sub>39</sub>H<sub>40</sub>, Si<sub>44</sub>H<sub>42</sub>, and Si<sub>48</sub>H<sub>46</sub>) across five adsorption sites (bridge(B), on-top(T), hollow-tetrahedral inner(Td<sub>inner</sub>), hollow-tetrahedral surface(Td<sub>surface</sub>), and hollow-hexagonal(Hex)), utilizing density functional theory (DFT) with the M06–2X hybrid functional and 6-31G+(d) basis set. Findings identify Td<sub>inner</sub> as the most favorable adsorption site, with a binding energy (E<sub>bind</sub>) of 0.80–1.00 eV, dependent on SiQD size. The adsorption site exerts a more pronounced impact on E<sub>bind</sub> than the cluster size. Multiple adsorptions in SiQDs show increased E<sub>bind</sub> per Li atom with Li atom number. Molecular volume changes, independent of Li atom number but site-dependent, exhibit a maximum of 2.51 %. SiQD energy gap, influencing conductivity, varies with size, larger SiQDs being more conductive, especially with Li adsorption. Conclusively, our study recommends large-sized SiQDs as optimal LIB anode materials, offering high capacity, minimal volume expansion, and reasonable conductivity. This research addresses a theoretical gap, illuminating the impact of Li adsorption on SiQD molecular volumes and electronic structures, aiding in the design of enhanced capacity silicon anodes for LIB.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"164 ","pages":"Article 116060"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT study of lithium adsorption on silicon quantum dots for battery applications\",\"authors\":\"Fadjar Mulya ,&nbsp;Thanawit Kuamit ,&nbsp;Pavee Apilardmongkol ,&nbsp;Vudhichai Parasuk\",\"doi\":\"10.1016/j.physe.2024.116060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding lithium (Li) adsorption in silicon quantum dots (SiQDs) is crucial for optimizing Li-ion battery (LIB) anode materials. We systematically investigated Li adsorption in ten hydrogenated SiQDs (Si<sub>10</sub>H<sub>16</sub>, Si<sub>14</sub>H<sub>20</sub>, Si<sub>18</sub>H<sub>24</sub>, Si<sub>22</sub>H<sub>28</sub>, Si<sub>26</sub>H<sub>30</sub>, Si<sub>30</sub>H<sub>34</sub>, Si<sub>35</sub>H<sub>36</sub>, Si<sub>39</sub>H<sub>40</sub>, Si<sub>44</sub>H<sub>42</sub>, and Si<sub>48</sub>H<sub>46</sub>) across five adsorption sites (bridge(B), on-top(T), hollow-tetrahedral inner(Td<sub>inner</sub>), hollow-tetrahedral surface(Td<sub>surface</sub>), and hollow-hexagonal(Hex)), utilizing density functional theory (DFT) with the M06–2X hybrid functional and 6-31G+(d) basis set. Findings identify Td<sub>inner</sub> as the most favorable adsorption site, with a binding energy (E<sub>bind</sub>) of 0.80–1.00 eV, dependent on SiQD size. The adsorption site exerts a more pronounced impact on E<sub>bind</sub> than the cluster size. Multiple adsorptions in SiQDs show increased E<sub>bind</sub> per Li atom with Li atom number. Molecular volume changes, independent of Li atom number but site-dependent, exhibit a maximum of 2.51 %. SiQD energy gap, influencing conductivity, varies with size, larger SiQDs being more conductive, especially with Li adsorption. Conclusively, our study recommends large-sized SiQDs as optimal LIB anode materials, offering high capacity, minimal volume expansion, and reasonable conductivity. This research addresses a theoretical gap, illuminating the impact of Li adsorption on SiQD molecular volumes and electronic structures, aiding in the design of enhanced capacity silicon anodes for LIB.</p></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"164 \",\"pages\":\"Article 116060\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724001644\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001644","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解硅量子点(SiQDs)中的锂(Li)吸附对优化锂离子电池(LIB)负极材料至关重要。我们系统地研究了十种氢化硅量子点(Si10H16、Si14H20、Si18H24、Si22H28、Si26H30、Si30H34、Si35H36、Si39H40、Si44H42 和 Si48H46)中锂在五个吸附位点(桥(B)、顶(T)、空心-四面体(T)和桥(C))的吸附情况、上(T)、空心四面体内部(Tdinner)、空心四面体表面(Tdsurface)和空心六边形(Hex))的五个吸附位点,采用 M06-2X 混合函数和 6-31G+(d) 基集的密度泛函理论(DFT)。研究结果表明,Tdinner 是最有利的吸附位点,其结合能(Ebind)为 0.80-1.00 eV,取决于 SiQD 的尺寸。吸附位点对 Ebind 的影响比团簇大小更明显。SiQD 中的多重吸附显示出每个锂原子的 Ebind 随锂离子原子数的增加而增加。分子体积变化与锂原子数无关,但与吸附位点有关,其最大值为 2.51%。影响导电性的 SiQD 能隙随尺寸而变化,尺寸较大的 SiQD 具有更强的导电性,尤其是在吸附锂的情况下。最后,我们的研究建议将大尺寸的 SiQDs 作为最佳的锂离子电池阳极材料,因为它具有高容量、最小体积膨胀和合理的导电性。这项研究填补了理论空白,阐明了锂吸附对 SiQD 分子体积和电子结构的影响,有助于设计 LIB 的增容硅阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DFT study of lithium adsorption on silicon quantum dots for battery applications

DFT study of lithium adsorption on silicon quantum dots for battery applications

DFT study of lithium adsorption on silicon quantum dots for battery applications

Understanding lithium (Li) adsorption in silicon quantum dots (SiQDs) is crucial for optimizing Li-ion battery (LIB) anode materials. We systematically investigated Li adsorption in ten hydrogenated SiQDs (Si10H16, Si14H20, Si18H24, Si22H28, Si26H30, Si30H34, Si35H36, Si39H40, Si44H42, and Si48H46) across five adsorption sites (bridge(B), on-top(T), hollow-tetrahedral inner(Tdinner), hollow-tetrahedral surface(Tdsurface), and hollow-hexagonal(Hex)), utilizing density functional theory (DFT) with the M06–2X hybrid functional and 6-31G+(d) basis set. Findings identify Tdinner as the most favorable adsorption site, with a binding energy (Ebind) of 0.80–1.00 eV, dependent on SiQD size. The adsorption site exerts a more pronounced impact on Ebind than the cluster size. Multiple adsorptions in SiQDs show increased Ebind per Li atom with Li atom number. Molecular volume changes, independent of Li atom number but site-dependent, exhibit a maximum of 2.51 %. SiQD energy gap, influencing conductivity, varies with size, larger SiQDs being more conductive, especially with Li adsorption. Conclusively, our study recommends large-sized SiQDs as optimal LIB anode materials, offering high capacity, minimal volume expansion, and reasonable conductivity. This research addresses a theoretical gap, illuminating the impact of Li adsorption on SiQD molecular volumes and electronic structures, aiding in the design of enhanced capacity silicon anodes for LIB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信