Papitchaya Chookaew, Apiradee Sukmilin, C. Jarusutthirak
{"title":"以过氧化钙为催化剂的催化臭氧处理合成废水中的双氯芬酸的优化方法","authors":"Papitchaya Chookaew, Apiradee Sukmilin, C. Jarusutthirak","doi":"10.32526/ennrj/22/20240102","DOIUrl":null,"url":null,"abstract":"This research studied the performance of ozonation process combined with calcium peroxide (CaO2) as a catalyst for the removal of diclofenac (DCF) from synthetic wastewater. The experiments were conducted using venturi-type ozonation with an ozone production rate of 96.30 mg/h. Response surface methodology (RSM) with a Box-Behnken experimental design (BBD) was used to investigate the DCF removal efficiency by optimizing the catalytic ozonation process and analyzing the influence of key parameters: solution pH (5.0-9.0), initial DCF concentration (10-25 mg/L), CaO2 dosage (1-3 g/L), and reaction time (30-90 min), on the DCF removal efficiencies. Analysis of variance (ANOVA) indicated that the experimental model derived from the RSM-BBD was best suited to a quadratic regression model, with a coefficient of determination (R2) of 0.84. The model demonstrated that the optimal conditions for achieving the highest DCF removal efficiency of up to 100% were an initial DCF concentration of 10 mg/L, solution pH of 7, CaO2 dosage of 2 g/L, and reaction time of 90 min. Using these conditions, the actual DCF removal efficiency from a confirmation test was 97.6%. The accuracy of the model was verified; the root mean square error (RMSE) was 5.90 and the mean absolute percentage error (MAPE) was 6.10%, indicating that the regression model could be used to predict the DCF removal efficiency under various conditions. The results showed that catalytic ozonation using CaO2 as a catalyst could effectively remove DCF in synthetic wastewater.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Diclofenac Treatment in Synthetic Wastewater using Catalytic Ozonation with Calcium Peroxide as Catalyst\",\"authors\":\"Papitchaya Chookaew, Apiradee Sukmilin, C. Jarusutthirak\",\"doi\":\"10.32526/ennrj/22/20240102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research studied the performance of ozonation process combined with calcium peroxide (CaO2) as a catalyst for the removal of diclofenac (DCF) from synthetic wastewater. The experiments were conducted using venturi-type ozonation with an ozone production rate of 96.30 mg/h. Response surface methodology (RSM) with a Box-Behnken experimental design (BBD) was used to investigate the DCF removal efficiency by optimizing the catalytic ozonation process and analyzing the influence of key parameters: solution pH (5.0-9.0), initial DCF concentration (10-25 mg/L), CaO2 dosage (1-3 g/L), and reaction time (30-90 min), on the DCF removal efficiencies. Analysis of variance (ANOVA) indicated that the experimental model derived from the RSM-BBD was best suited to a quadratic regression model, with a coefficient of determination (R2) of 0.84. The model demonstrated that the optimal conditions for achieving the highest DCF removal efficiency of up to 100% were an initial DCF concentration of 10 mg/L, solution pH of 7, CaO2 dosage of 2 g/L, and reaction time of 90 min. Using these conditions, the actual DCF removal efficiency from a confirmation test was 97.6%. The accuracy of the model was verified; the root mean square error (RMSE) was 5.90 and the mean absolute percentage error (MAPE) was 6.10%, indicating that the regression model could be used to predict the DCF removal efficiency under various conditions. The results showed that catalytic ozonation using CaO2 as a catalyst could effectively remove DCF in synthetic wastewater.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/22/20240102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/22/20240102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Optimization of Diclofenac Treatment in Synthetic Wastewater using Catalytic Ozonation with Calcium Peroxide as Catalyst
This research studied the performance of ozonation process combined with calcium peroxide (CaO2) as a catalyst for the removal of diclofenac (DCF) from synthetic wastewater. The experiments were conducted using venturi-type ozonation with an ozone production rate of 96.30 mg/h. Response surface methodology (RSM) with a Box-Behnken experimental design (BBD) was used to investigate the DCF removal efficiency by optimizing the catalytic ozonation process and analyzing the influence of key parameters: solution pH (5.0-9.0), initial DCF concentration (10-25 mg/L), CaO2 dosage (1-3 g/L), and reaction time (30-90 min), on the DCF removal efficiencies. Analysis of variance (ANOVA) indicated that the experimental model derived from the RSM-BBD was best suited to a quadratic regression model, with a coefficient of determination (R2) of 0.84. The model demonstrated that the optimal conditions for achieving the highest DCF removal efficiency of up to 100% were an initial DCF concentration of 10 mg/L, solution pH of 7, CaO2 dosage of 2 g/L, and reaction time of 90 min. Using these conditions, the actual DCF removal efficiency from a confirmation test was 97.6%. The accuracy of the model was verified; the root mean square error (RMSE) was 5.90 and the mean absolute percentage error (MAPE) was 6.10%, indicating that the regression model could be used to predict the DCF removal efficiency under various conditions. The results showed that catalytic ozonation using CaO2 as a catalyst could effectively remove DCF in synthetic wastewater.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology