无需梯度计算的结构化随机曲线拟合

Jixin Chen
{"title":"无需梯度计算的结构化随机曲线拟合","authors":"Jixin Chen","doi":"10.1016/j.jcmds.2024.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Optimization of parameters and hyperparameters is a general process for any data analysis. Because not all models are mathematically well-behaved, stochastic optimization can be useful in many analyses by randomly choosing parameters in each optimization iteration. Many such algorithms have been reported and applied in chemistry data analysis, but the one reported here is interesting to check out, where a naïve algorithm searches each parameter sequentially and randomly in its bounds. Then it picks the best for the next iteration. Thus, one can ignore irrational solution of the model itself or its gradient in parameter space and continue the optimization.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"12 ","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415824000087/pdfft?md5=d29b0c976e4cd3877c7a001f5d45fd9a&pid=1-s2.0-S2772415824000087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structured stochastic curve fitting without gradient calculation\",\"authors\":\"Jixin Chen\",\"doi\":\"10.1016/j.jcmds.2024.100097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimization of parameters and hyperparameters is a general process for any data analysis. Because not all models are mathematically well-behaved, stochastic optimization can be useful in many analyses by randomly choosing parameters in each optimization iteration. Many such algorithms have been reported and applied in chemistry data analysis, but the one reported here is interesting to check out, where a naïve algorithm searches each parameter sequentially and randomly in its bounds. Then it picks the best for the next iteration. Thus, one can ignore irrational solution of the model itself or its gradient in parameter space and continue the optimization.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"12 \",\"pages\":\"Article 100097\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415824000087/pdfft?md5=d29b0c976e4cd3877c7a001f5d45fd9a&pid=1-s2.0-S2772415824000087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415824000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415824000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

参数和超参数的优化是任何数据分析的一般过程。由于并非所有模型都具有良好的数学特性,随机优化可以在每次优化迭代中随机选择参数,从而在许多分析中发挥作用。许多此类算法已被报道并应用于化学数据分析中,但本文报道的算法值得一探究竟。在该算法中,一个天真的算法在其边界内按顺序随机搜索每个参数。然后在下一次迭代中选出最佳方案。因此,我们可以忽略模型本身的不合理解或其在参数空间的梯度,继续进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structured stochastic curve fitting without gradient calculation

Structured stochastic curve fitting without gradient calculation

Optimization of parameters and hyperparameters is a general process for any data analysis. Because not all models are mathematically well-behaved, stochastic optimization can be useful in many analyses by randomly choosing parameters in each optimization iteration. Many such algorithms have been reported and applied in chemistry data analysis, but the one reported here is interesting to check out, where a naïve algorithm searches each parameter sequentially and randomly in its bounds. Then it picks the best for the next iteration. Thus, one can ignore irrational solution of the model itself or its gradient in parameter space and continue the optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信