{"title":"印度尼西亚人对南海争端的看法:支持向量机和奈夫贝叶斯方法","authors":"Adinda Aulia Hafizha, Nurfarah Nidatya","doi":"10.33395/sinkron.v8i3.13735","DOIUrl":null,"url":null,"abstract":"In recent years, relations between Indonesia and China have become increasingly cordial. However, a potential source of tension is emerging in the form of a heightened dispute in the South China Sea. The government of Indonesia is considered an ally, however there has been a long-standing negative opinion among Indonesians regarding China, which has influenced the way both the general public and the political elite have perceived the relations between Indonesia and China. This research has two objectives. The first is to examine Indonesian perceptions regarding the South China Sea conflict. The second is to compare the performance of Support Vector Machine (SVM) and Multinomial Naïve Bayes as a method of sentiment analysis. Using 7.051 Indonesian-language posts from social media X as a dataset, the result shows that a significant portion of Indonesians view the dispute negatively, fearing potential escalation and threats to national security. Despite these concerns, there is reason to believe that Indonesia can play a proactive role in resolving the conflict through ASEAN and UNCLOS frameworks. Meanwhile, SVM has been demonstrated to be an effective method for handling sentiment analysis data, achieving an accuracy of 87.95%. This work contributes to the field of sentiment analysis by highlighting social media as a valuable platform and by demonstrating the effectiveness of SVM. Furthermore, the study offers new insights for the field of international relations by analyzing the South China Sea dispute through a machine learning lens, which may lead to the development of novel perspectives.","PeriodicalId":34046,"journal":{"name":"Sinkron","volume":"23 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indonesians Perception on the South China Sea Dispute: Support Vector Machine and Naïve Bayes Approach\",\"authors\":\"Adinda Aulia Hafizha, Nurfarah Nidatya\",\"doi\":\"10.33395/sinkron.v8i3.13735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, relations between Indonesia and China have become increasingly cordial. However, a potential source of tension is emerging in the form of a heightened dispute in the South China Sea. The government of Indonesia is considered an ally, however there has been a long-standing negative opinion among Indonesians regarding China, which has influenced the way both the general public and the political elite have perceived the relations between Indonesia and China. This research has two objectives. The first is to examine Indonesian perceptions regarding the South China Sea conflict. The second is to compare the performance of Support Vector Machine (SVM) and Multinomial Naïve Bayes as a method of sentiment analysis. Using 7.051 Indonesian-language posts from social media X as a dataset, the result shows that a significant portion of Indonesians view the dispute negatively, fearing potential escalation and threats to national security. Despite these concerns, there is reason to believe that Indonesia can play a proactive role in resolving the conflict through ASEAN and UNCLOS frameworks. Meanwhile, SVM has been demonstrated to be an effective method for handling sentiment analysis data, achieving an accuracy of 87.95%. This work contributes to the field of sentiment analysis by highlighting social media as a valuable platform and by demonstrating the effectiveness of SVM. Furthermore, the study offers new insights for the field of international relations by analyzing the South China Sea dispute through a machine learning lens, which may lead to the development of novel perspectives.\",\"PeriodicalId\":34046,\"journal\":{\"name\":\"Sinkron\",\"volume\":\"23 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sinkron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33395/sinkron.v8i3.13735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinkron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/sinkron.v8i3.13735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Indonesians Perception on the South China Sea Dispute: Support Vector Machine and Naïve Bayes Approach
In recent years, relations between Indonesia and China have become increasingly cordial. However, a potential source of tension is emerging in the form of a heightened dispute in the South China Sea. The government of Indonesia is considered an ally, however there has been a long-standing negative opinion among Indonesians regarding China, which has influenced the way both the general public and the political elite have perceived the relations between Indonesia and China. This research has two objectives. The first is to examine Indonesian perceptions regarding the South China Sea conflict. The second is to compare the performance of Support Vector Machine (SVM) and Multinomial Naïve Bayes as a method of sentiment analysis. Using 7.051 Indonesian-language posts from social media X as a dataset, the result shows that a significant portion of Indonesians view the dispute negatively, fearing potential escalation and threats to national security. Despite these concerns, there is reason to believe that Indonesia can play a proactive role in resolving the conflict through ASEAN and UNCLOS frameworks. Meanwhile, SVM has been demonstrated to be an effective method for handling sentiment analysis data, achieving an accuracy of 87.95%. This work contributes to the field of sentiment analysis by highlighting social media as a valuable platform and by demonstrating the effectiveness of SVM. Furthermore, the study offers new insights for the field of international relations by analyzing the South China Sea dispute through a machine learning lens, which may lead to the development of novel perspectives.