TransUNet:从变压器的角度重新思考医学图像分割的 U-Net 架构设计

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jieneng Chen , Jieru Mei , Xianhang Li , Yongyi Lu , Qihang Yu , Qingyue Wei , Xiangde Luo , Yutong Xie , Ehsan Adeli , Yan Wang , Matthew P. Lungren , Shaoting Zhang , Lei Xing , Le Lu , Alan Yuille , Yuyin Zhou
{"title":"TransUNet:从变压器的角度重新思考医学图像分割的 U-Net 架构设计","authors":"Jieneng Chen ,&nbsp;Jieru Mei ,&nbsp;Xianhang Li ,&nbsp;Yongyi Lu ,&nbsp;Qihang Yu ,&nbsp;Qingyue Wei ,&nbsp;Xiangde Luo ,&nbsp;Yutong Xie ,&nbsp;Ehsan Adeli ,&nbsp;Yan Wang ,&nbsp;Matthew P. Lungren ,&nbsp;Shaoting Zhang ,&nbsp;Lei Xing ,&nbsp;Le Lu ,&nbsp;Alan Yuille ,&nbsp;Yuyin Zhou","doi":"10.1016/j.media.2024.103280","DOIUrl":null,"url":null,"abstract":"<div><p>Medical image segmentation is crucial for healthcare, yet convolution-based methods like U-Net face limitations in modeling long-range dependencies. To address this, Transformers designed for sequence-to-sequence predictions have been integrated into medical image segmentation. However, a comprehensive understanding of Transformers’ self-attention in U-Net components is lacking. TransUNet, first introduced in 2021, is widely recognized as one of the first models to integrate Transformer into medical image analysis. In this study, we present the versatile framework of TransUNet that encapsulates Transformers’ self-attention into two key modules: (1) a Transformer encoder tokenizing image patches from a convolution neural network (CNN) feature map, facilitating global context extraction, and (2) a Transformer decoder refining candidate regions through cross-attention between proposals and U-Net features. These modules can be flexibly inserted into the U-Net backbone, resulting in three configurations: Encoder-only, Decoder-only, and Encoder+Decoder. TransUNet provides a library encompassing both 2D and 3D implementations, enabling users to easily tailor the chosen architecture. Our findings highlight the encoder’s efficacy in modeling interactions among multiple abdominal organs and the decoder’s strength in handling small targets like tumors. It excels in diverse medical applications, such as multi-organ segmentation, pancreatic tumor segmentation, and hepatic vessel segmentation. Notably, our TransUNet achieves a significant average Dice improvement of 1.06% and 4.30% for multi-organ segmentation and pancreatic tumor segmentation, respectively, when compared to the highly competitive nn-UNet, and surpasses the top-1 solution in the BrasTS2021 challenge. 2D/3D Code and models are available at <span><span>https://github.com/Beckschen/TransUNet</span><svg><path></path></svg></span> and <span><span>https://github.com/Beckschen/TransUNet-3D</span><svg><path></path></svg></span>, respectively.</p></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1361841524002056/pdfft?md5=06af9f939f40dc38d4e6d699170f92e0&pid=1-s2.0-S1361841524002056-main.pdf","citationCount":"0","resultStr":"{\"title\":\"TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers\",\"authors\":\"Jieneng Chen ,&nbsp;Jieru Mei ,&nbsp;Xianhang Li ,&nbsp;Yongyi Lu ,&nbsp;Qihang Yu ,&nbsp;Qingyue Wei ,&nbsp;Xiangde Luo ,&nbsp;Yutong Xie ,&nbsp;Ehsan Adeli ,&nbsp;Yan Wang ,&nbsp;Matthew P. Lungren ,&nbsp;Shaoting Zhang ,&nbsp;Lei Xing ,&nbsp;Le Lu ,&nbsp;Alan Yuille ,&nbsp;Yuyin Zhou\",\"doi\":\"10.1016/j.media.2024.103280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Medical image segmentation is crucial for healthcare, yet convolution-based methods like U-Net face limitations in modeling long-range dependencies. To address this, Transformers designed for sequence-to-sequence predictions have been integrated into medical image segmentation. However, a comprehensive understanding of Transformers’ self-attention in U-Net components is lacking. TransUNet, first introduced in 2021, is widely recognized as one of the first models to integrate Transformer into medical image analysis. In this study, we present the versatile framework of TransUNet that encapsulates Transformers’ self-attention into two key modules: (1) a Transformer encoder tokenizing image patches from a convolution neural network (CNN) feature map, facilitating global context extraction, and (2) a Transformer decoder refining candidate regions through cross-attention between proposals and U-Net features. These modules can be flexibly inserted into the U-Net backbone, resulting in three configurations: Encoder-only, Decoder-only, and Encoder+Decoder. TransUNet provides a library encompassing both 2D and 3D implementations, enabling users to easily tailor the chosen architecture. Our findings highlight the encoder’s efficacy in modeling interactions among multiple abdominal organs and the decoder’s strength in handling small targets like tumors. It excels in diverse medical applications, such as multi-organ segmentation, pancreatic tumor segmentation, and hepatic vessel segmentation. Notably, our TransUNet achieves a significant average Dice improvement of 1.06% and 4.30% for multi-organ segmentation and pancreatic tumor segmentation, respectively, when compared to the highly competitive nn-UNet, and surpasses the top-1 solution in the BrasTS2021 challenge. 2D/3D Code and models are available at <span><span>https://github.com/Beckschen/TransUNet</span><svg><path></path></svg></span> and <span><span>https://github.com/Beckschen/TransUNet-3D</span><svg><path></path></svg></span>, respectively.</p></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1361841524002056/pdfft?md5=06af9f939f40dc38d4e6d699170f92e0&pid=1-s2.0-S1361841524002056-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841524002056\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524002056","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

医学图像分割对医疗保健至关重要,但基于卷积的方法(如 U-Net)在建立长距离依赖关系模型方面存在局限性。为解决这一问题,专为序列到序列预测设计的变换器已被集成到医学图像分割中。然而,目前还缺乏对 U-Net 组件中 Transformers 自我关注的全面了解。2021 年首次推出的 TransUNet 被公认为是最早将 Transformer 集成到医学图像分析中的模型之一。在本研究中,我们介绍了 TransUNet 的多功能框架,该框架将 Transformer 的自我关注封装到两个关键模块中:(1)Transformer 编码器从卷积神经网络(CNN)特征图中标记图像补丁,促进全局上下文提取;(2)Transformer 解码器通过提案和 U-Net 特征之间的交叉关注完善候选区域。这些模块可以灵活地插入 U-Net 主干网,形成三种配置:仅编码器、仅解码器和编码器+解码器。TransUNet 提供了一个包含 2D 和 3D 实现的库,使用户能够轻松定制所选架构。我们的研究结果凸显了编码器在模拟多个腹部器官间相互作用方面的功效,以及解码器在处理肿瘤等小目标方面的优势。它在多器官分割、胰腺肿瘤分割和肝血管分割等多种医疗应用中表现出色。值得注意的是,与极具竞争力的 nn-UNet 相比,我们的 TransUNet 在多器官分割和胰腺肿瘤分割方面实现了显著的平均 Dice 提升,分别为 1.06% 和 4.30%,并超越了 BrasTS2021 挑战赛中的前 1 名解决方案。二维/三维代码和模型可分别从 https://github.com/Beckschen/TransUNet 和 https://github.com/Beckschen/TransUNet-3D 网站获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers

Medical image segmentation is crucial for healthcare, yet convolution-based methods like U-Net face limitations in modeling long-range dependencies. To address this, Transformers designed for sequence-to-sequence predictions have been integrated into medical image segmentation. However, a comprehensive understanding of Transformers’ self-attention in U-Net components is lacking. TransUNet, first introduced in 2021, is widely recognized as one of the first models to integrate Transformer into medical image analysis. In this study, we present the versatile framework of TransUNet that encapsulates Transformers’ self-attention into two key modules: (1) a Transformer encoder tokenizing image patches from a convolution neural network (CNN) feature map, facilitating global context extraction, and (2) a Transformer decoder refining candidate regions through cross-attention between proposals and U-Net features. These modules can be flexibly inserted into the U-Net backbone, resulting in three configurations: Encoder-only, Decoder-only, and Encoder+Decoder. TransUNet provides a library encompassing both 2D and 3D implementations, enabling users to easily tailor the chosen architecture. Our findings highlight the encoder’s efficacy in modeling interactions among multiple abdominal organs and the decoder’s strength in handling small targets like tumors. It excels in diverse medical applications, such as multi-organ segmentation, pancreatic tumor segmentation, and hepatic vessel segmentation. Notably, our TransUNet achieves a significant average Dice improvement of 1.06% and 4.30% for multi-organ segmentation and pancreatic tumor segmentation, respectively, when compared to the highly competitive nn-UNet, and surpasses the top-1 solution in the BrasTS2021 challenge. 2D/3D Code and models are available at https://github.com/Beckschen/TransUNet and https://github.com/Beckschen/TransUNet-3D, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信