西尔皮斯基图和数据中心网络的生成树数量

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Xiaojuan Zhang , Gang Yang , Changxiang He , Ralf Klasing , Yaping Mao
{"title":"西尔皮斯基图和数据中心网络的生成树数量","authors":"Xiaojuan Zhang ,&nbsp;Gang Yang ,&nbsp;Changxiang He ,&nbsp;Ralf Klasing ,&nbsp;Yaping Mao","doi":"10.1016/j.ic.2024.105194","DOIUrl":null,"url":null,"abstract":"<div><p>The number of spanning trees is an important graph invariant related to different topological and dynamic properties of the graph, such as its reliability, synchronization capability and diffusion properties. In 2007, Chang et al. proposed two conjectures on the number of spanning trees of Sierpiński triangle graphs and its spanning tree entropy. In this paper, we completely confirm these conjectures. For data center networks <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, we get the exact formula for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, and upper and lower bounds for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. Our results allow also the calculation of the spanning tree entropy of Sierpiński graphs and data center networks.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"300 ","pages":"Article 105194"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of spanning trees for Sierpiński graphs and data center networks\",\"authors\":\"Xiaojuan Zhang ,&nbsp;Gang Yang ,&nbsp;Changxiang He ,&nbsp;Ralf Klasing ,&nbsp;Yaping Mao\",\"doi\":\"10.1016/j.ic.2024.105194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The number of spanning trees is an important graph invariant related to different topological and dynamic properties of the graph, such as its reliability, synchronization capability and diffusion properties. In 2007, Chang et al. proposed two conjectures on the number of spanning trees of Sierpiński triangle graphs and its spanning tree entropy. In this paper, we completely confirm these conjectures. For data center networks <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, we get the exact formula for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, and upper and lower bounds for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. Our results allow also the calculation of the spanning tree entropy of Sierpiński graphs and data center networks.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"300 \",\"pages\":\"Article 105194\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000592\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000592","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

生成树的数量是一个重要的图不变式,它与图的不同拓扑和动态特性有关,如图的可靠性、同步能力和扩散特性。2007 年,Chang 等人提出了关于 Sierpiński 三角形图的生成树数及其生成树熵的两个猜想。在本文中,我们完全证实了这些猜想。对于数据中心网络 Dk,n,我们得到了 k=1 的精确公式和 k≥2 的上下限。我们的结果还允许计算 Sierpiński 图和数据中心网络的生成树熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of spanning trees for Sierpiński graphs and data center networks

The number of spanning trees is an important graph invariant related to different topological and dynamic properties of the graph, such as its reliability, synchronization capability and diffusion properties. In 2007, Chang et al. proposed two conjectures on the number of spanning trees of Sierpiński triangle graphs and its spanning tree entropy. In this paper, we completely confirm these conjectures. For data center networks Dk,n, we get the exact formula for k=1, and upper and lower bounds for k2. Our results allow also the calculation of the spanning tree entropy of Sierpiński graphs and data center networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信