改进多语言混合语言模型

Mohammed Abd, Elmoneim Al Salamony
{"title":"改进多语言混合语言模型","authors":"Mohammed Abd, Elmoneim Al Salamony","doi":"10.21608/djicsi.2024.368659","DOIUrl":null,"url":null,"abstract":"The rapid evolution of social media has facilitated deep insights into user opinions. However, sentiment analysis, particularly for low-resource languages like Arabic, remains underexplored due to limited resources. This study addresses this gap by investigating sentiment analysis on tweet texts from SemEval-17, 2.5+ Million Rows Egyptian Datasets Collection and the Arabic Sentiment Tweet dataset. We evaluated four pretrained language models and introduced two ensemble models. Our results demonstrate that monolingual models showed superior performance, while ensemble models surpassed baseline results, with the majority voting ensemble achieving the best performance, even outperforming English language benchmarks","PeriodicalId":515399,"journal":{"name":"مجلة الدلتا الدولية للعلوم التجارية ونظم المعلومات","volume":"274 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Language Models for Improved Multilingual\",\"authors\":\"Mohammed Abd, Elmoneim Al Salamony\",\"doi\":\"10.21608/djicsi.2024.368659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid evolution of social media has facilitated deep insights into user opinions. However, sentiment analysis, particularly for low-resource languages like Arabic, remains underexplored due to limited resources. This study addresses this gap by investigating sentiment analysis on tweet texts from SemEval-17, 2.5+ Million Rows Egyptian Datasets Collection and the Arabic Sentiment Tweet dataset. We evaluated four pretrained language models and introduced two ensemble models. Our results demonstrate that monolingual models showed superior performance, while ensemble models surpassed baseline results, with the majority voting ensemble achieving the best performance, even outperforming English language benchmarks\",\"PeriodicalId\":515399,\"journal\":{\"name\":\"مجلة الدلتا الدولية للعلوم التجارية ونظم المعلومات\",\"volume\":\"274 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"مجلة الدلتا الدولية للعلوم التجارية ونظم المعلومات\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/djicsi.2024.368659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"مجلة الدلتا الدولية للعلوم التجارية ونظم المعلومات","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/djicsi.2024.368659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体的快速发展促进了对用户意见的深入了解。然而,由于资源有限,情感分析,尤其是阿拉伯语等低资源语言的情感分析仍未得到充分开发。本研究通过对 SemEval-17、250 多万行埃及数据集和阿拉伯语情感推特数据集的推特文本进行情感分析,填补了这一空白。我们评估了四个预训练语言模型,并引入了两个集合模型。我们的结果表明,单语言模型表现出了卓越的性能,而集合模型则超越了基线结果,其中多数投票集合模型的性能最好,甚至超过了英语基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Language Models for Improved Multilingual
The rapid evolution of social media has facilitated deep insights into user opinions. However, sentiment analysis, particularly for low-resource languages like Arabic, remains underexplored due to limited resources. This study addresses this gap by investigating sentiment analysis on tweet texts from SemEval-17, 2.5+ Million Rows Egyptian Datasets Collection and the Arabic Sentiment Tweet dataset. We evaluated four pretrained language models and introduced two ensemble models. Our results demonstrate that monolingual models showed superior performance, while ensemble models surpassed baseline results, with the majority voting ensemble achieving the best performance, even outperforming English language benchmarks
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信