Yohanes Maria Jonathan Glenn Paskalis, K. O. Bachri
{"title":"利用学生证验证概念设计具有电子投票功能的学生组织网站","authors":"Yohanes Maria Jonathan Glenn Paskalis, K. O. Bachri","doi":"10.33395/sinkron.v8i3.13734","DOIUrl":null,"url":null,"abstract":"Student organizations hold an election to decide their next head and vice head every year. The best voting method for student organizations is to use an independent website with a voting system. The voting system can use students’ identity card and their student email as base for verification. OCR and face detection can be used for extracting all the needed information to validate the student card and verify it with the corresponding student email input. Other than the voting system, the website can be used to promote the student organization itself. The website was built using Nuxt for its front-end, Firebase for its back-end, and Cloud Vision API for its OCR and face detection module. There is a Lighthouse test, a stress test for the voting system, and a test to determine the optimal file size for the voting system. The results are a website that has an average Lighthouse score of 97.58. The stress test, which used a script that does submission repeatedly, results suggest that the voting system can handle up to 2000 voters at the same time. The optimal file size determined by the authors to be 500KB as the result of its test. The conclusions are a great performing website with a voting system can be built using Nuxt and Firebase, the voting system can be improved by adding another step of verification, and it’s best to use and image with a file size above 250KB when using Cloud Vision API for optimal results","PeriodicalId":34046,"journal":{"name":"Sinkron","volume":"88 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student Organization Website with E-Voting Feature by Using Student Card Verification Concept Design\",\"authors\":\"Yohanes Maria Jonathan Glenn Paskalis, K. O. Bachri\",\"doi\":\"10.33395/sinkron.v8i3.13734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student organizations hold an election to decide their next head and vice head every year. The best voting method for student organizations is to use an independent website with a voting system. The voting system can use students’ identity card and their student email as base for verification. OCR and face detection can be used for extracting all the needed information to validate the student card and verify it with the corresponding student email input. Other than the voting system, the website can be used to promote the student organization itself. The website was built using Nuxt for its front-end, Firebase for its back-end, and Cloud Vision API for its OCR and face detection module. There is a Lighthouse test, a stress test for the voting system, and a test to determine the optimal file size for the voting system. The results are a website that has an average Lighthouse score of 97.58. The stress test, which used a script that does submission repeatedly, results suggest that the voting system can handle up to 2000 voters at the same time. The optimal file size determined by the authors to be 500KB as the result of its test. The conclusions are a great performing website with a voting system can be built using Nuxt and Firebase, the voting system can be improved by adding another step of verification, and it’s best to use and image with a file size above 250KB when using Cloud Vision API for optimal results\",\"PeriodicalId\":34046,\"journal\":{\"name\":\"Sinkron\",\"volume\":\"88 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sinkron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33395/sinkron.v8i3.13734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinkron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/sinkron.v8i3.13734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Student Organization Website with E-Voting Feature by Using Student Card Verification Concept Design
Student organizations hold an election to decide their next head and vice head every year. The best voting method for student organizations is to use an independent website with a voting system. The voting system can use students’ identity card and their student email as base for verification. OCR and face detection can be used for extracting all the needed information to validate the student card and verify it with the corresponding student email input. Other than the voting system, the website can be used to promote the student organization itself. The website was built using Nuxt for its front-end, Firebase for its back-end, and Cloud Vision API for its OCR and face detection module. There is a Lighthouse test, a stress test for the voting system, and a test to determine the optimal file size for the voting system. The results are a website that has an average Lighthouse score of 97.58. The stress test, which used a script that does submission repeatedly, results suggest that the voting system can handle up to 2000 voters at the same time. The optimal file size determined by the authors to be 500KB as the result of its test. The conclusions are a great performing website with a voting system can be built using Nuxt and Firebase, the voting system can be improved by adding another step of verification, and it’s best to use and image with a file size above 250KB when using Cloud Vision API for optimal results