{"title":"超高能量下电子能谱对脉冲星晕形态的影响","authors":"Ying-Ying Guo , Qiang Yuan","doi":"10.1016/j.jheap.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>The extended <em>γ</em>-ray halos around pulsars are unique probe of transportation of high-energy electrons (and positrons) in vicinities of such pulsars. Observations of morphologies of several such halos indicate that particles diffuse very slowly around pulsars, compared with that in the Milky Way halo. The energy-dependent morphologies are expected to be very important in studying the energy-dependence of the diffusion coefficient. In this work we point out that the spectrum of high-energy electrons takes effect in shaping the <em>γ</em>-ray morphologies at the ultra-high-energy bands, and thus results in a degeneracy between the electron spectrum and the energy-dependence of the diffusion coefficient. The reasons for such a degeneracy include both the Klein-Nishina effect of the inverse Compton scattering and the curvature (if any) of the electron spectrum. It thus necessary to take into account the spectral shape of electrons when deriving the energy-dependence of diffusion coefficient using ultra-high-energy <em>γ</em>-ray measurements of extended pulsar halos.</p></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"43 ","pages":"Pages 227-230"},"PeriodicalIF":10.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of electron spectra on morphology of pulsar halos at ultra-high energies\",\"authors\":\"Ying-Ying Guo , Qiang Yuan\",\"doi\":\"10.1016/j.jheap.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extended <em>γ</em>-ray halos around pulsars are unique probe of transportation of high-energy electrons (and positrons) in vicinities of such pulsars. Observations of morphologies of several such halos indicate that particles diffuse very slowly around pulsars, compared with that in the Milky Way halo. The energy-dependent morphologies are expected to be very important in studying the energy-dependence of the diffusion coefficient. In this work we point out that the spectrum of high-energy electrons takes effect in shaping the <em>γ</em>-ray morphologies at the ultra-high-energy bands, and thus results in a degeneracy between the electron spectrum and the energy-dependence of the diffusion coefficient. The reasons for such a degeneracy include both the Klein-Nishina effect of the inverse Compton scattering and the curvature (if any) of the electron spectrum. It thus necessary to take into account the spectral shape of electrons when deriving the energy-dependence of diffusion coefficient using ultra-high-energy <em>γ</em>-ray measurements of extended pulsar halos.</p></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"43 \",\"pages\":\"Pages 227-230\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404824000612\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824000612","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Impact of electron spectra on morphology of pulsar halos at ultra-high energies
The extended γ-ray halos around pulsars are unique probe of transportation of high-energy electrons (and positrons) in vicinities of such pulsars. Observations of morphologies of several such halos indicate that particles diffuse very slowly around pulsars, compared with that in the Milky Way halo. The energy-dependent morphologies are expected to be very important in studying the energy-dependence of the diffusion coefficient. In this work we point out that the spectrum of high-energy electrons takes effect in shaping the γ-ray morphologies at the ultra-high-energy bands, and thus results in a degeneracy between the electron spectrum and the energy-dependence of the diffusion coefficient. The reasons for such a degeneracy include both the Klein-Nishina effect of the inverse Compton scattering and the curvature (if any) of the electron spectrum. It thus necessary to take into account the spectral shape of electrons when deriving the energy-dependence of diffusion coefficient using ultra-high-energy γ-ray measurements of extended pulsar halos.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.